Pandas Copy DataFrame
This tutorial will show you how to DataFrame.copy()
copy a DataFrame object using the copy method.
import pandas as pd
items_df = pd.DataFrame(
{
"Id": [302, 504, 708],
"Cost": ["300", "400", "350"],
}
)
print(items_df)
Output:
Id Cost
0 302 300
1 504 400
2 708 350
We will use the above example to demonstrate how to use the method in Pandas DataFrame.copy()
.
pandas.DataFrame.copy()
Method Syntax
DataFrame.copy(deep=True)
It returns DataFrame
a copy of . deep
By default True
, , which means any changes made in the copy will not be reflected in the original DataFrame. However, if we set deep=False
, then any changes made in the copy will also be reflected in the original DataFrame.
pandas.DataFrame.copy()
Copy a Pandas DataFrame using the
import pandas as pd
import numpy as np
items_df = pd.DataFrame(
{
"Id": [302, 504, 708],
"Cost": ["300", "400", "350"],
}
)
deep_copy = items_df.copy()
print("Original DataFrame before changing value in copy DataFrame:")
print(items_df, "\n")
print("Copy DataFrame before changing value in copy DataFrame:")
print(deep_copy, "\n")
deep_copy.loc[0, "Cost"] = np.nan
print("Original DataFrame after changing value in copy DataFrame:")
print(items_df, "\n")
print("Copy DataFrame after changing value in copy DataFrame:")
print(deep_copy, "\n")
Output:
Original DataFrame before changing value in copy DataFrame:
Id Cost
0 302 300
1 504 400
2 708 350
Copy DataFrame before changing value in copy DataFrame:
Id Cost
0 302 300
1 504 400
2 708 350
Original DataFrame after changing value in copy DataFrame:
Id Cost
0 302 300
1 504 400
2 708 350
Copy DataFrame after changing value in copy DataFrame:
Id Cost
0 302 NaN
1 504 400
2 708 350
It creates items_df
a copy of the DataFrame as deep_copy
. If we change deep_copy
any value of the copy, the original DataFrame items_df
remains unchanged. We set the value of the column deep_copy
of the first row in to , but does not change.Cost
NaN
items_df
Assigning a Pandas DataFrame to a variable to copy the DataFrame
import pandas as pd
import numpy as np
items_df = pd.DataFrame(
{
"Id": [302, 504, 708],
"Cost": ["300", "400", "350"],
}
)
copy_cost = items_df["Cost"]
print("Cost column of Original DataFrame before changing value in copy DataFrame:")
print(items_df, "\n")
print("Cost column of Copied DataFrame before changing value in copy DataFrame:")
print(copy_cost, "\n")
copy_cost[0] = np.nan
print("Cost column of Original DataFrame after changing value in copy DataFrame:")
print(copy_cost, "\n")
print("Cost column of Copied DataFrame after changing value in copy DataFrame:")
print(copy_cost, "\n")
Output:
Cost column of Original DataFrame before changing value in copy DataFrame:
Id Cost
0 302 300
1 504 400
2 708 350
Cost column of Copied DataFrame before changing value in copy DataFrame:
0 300
1 400
2 350
Name: Cost, dtype: object
Cost column of Original DataFrame after changing value in copy DataFrame:
0 NaN
1 400
2 350
Name: Cost, dtype: object
Cost column of Copied DataFrame after changing value in copy DataFrame:
0 NaN
1 400
2 350
Name: Cost, dtype: object
It creates columns items_df
in the DataFrame as .Cost
copy_cost
For reprinting, please send an email to 1244347461@qq.com for approval. After obtaining the author's consent, kindly include the source as a link.
Related Articles
Pandas DataFrame.ix[] Function
Publish Date:2025/05/01 Views:168 Category:Python
-
Python Pandas DataFrame.ix[] function slices rows or columns based on the value of the argument. pandas.DataFrame.ix[] grammar DataFrame . ix[index = None , label = None ] parameter index Integer or list of integers used to slice row indice
Pandas DataFrame.describe() Function
Publish Date:2025/05/01 Views:120 Category:Python
-
Python Pandas DataFrame.describe() function returns the statistics of a DataFrame. pandas.DataFrame.describe() grammar DataFrame . describe( percentiles = None , include = None , exclude = None , datetime_is_numeric = False ) parameter perc
Pandas DataFrame.astype() Function
Publish Date:2025/05/01 Views:160 Category:Python
-
Python Pandas DataFrame.astype() function changes the data type of an object to the specified data type. pandas.DataFrame.astype() grammar DataFrame . astype(dtype, copy = True , errors = "raise" ) parameter dtype The data type we want to a
Pandas DataFrame.to_dict() Function
Publish Date:2025/05/01 Views:188 Category:Python
-
Python Pandas DataFrame.to_dict() function converts the given DataFrame to a dictionary. pandas.DataFrame.to_dict() Syntax DataFrame . to_dict(orient = 'dict' , into = class ' dict ' ) parameter orient This parameter determines the type of
Pandas DataFrame.reset_index() Function
Publish Date:2025/05/01 Views:140 Category:Python
-
Python Pandas DataFrame.reset_index() function resets the index of the given DataFrame. It replaces the old index with the default index. If the given DataFrame has a MultiIndex, then this method removes all the levels. pandas.DataFrame.rep
Pandas DataFrame.resample() Function
Publish Date:2025/05/01 Views:78 Category:Python
-
Python Pandas DataFrame.resample() function resamples time series data. pandas.DataFrame.resample() Syntax DataFrame . resample( rule, axis = 0 , closed = None , label = None , convention = "start" , kind = None , loffset = None , base = No
Pandas DataFrame.insert() Function
Publish Date:2025/05/01 Views:116 Category:Python
-
Python Pandas DataFrame.insert() function inserts a column at the specified position into the DataFrame. pandas.DataFrame.insert() Syntax DataFrame . insert(loc, column, value, allow_duplicates = False ) parameter loc It is an integer param
Pandas DataFrame.idxmax() Function
Publish Date:2025/05/01 Views:79 Category:Python
-
Python Pandas DataFrame.idxmax() function returns the index of the maximum value in a row or column. pandas.DataFrame.idxmax() Syntax DataFrame . idxmax(axis = 0 , skipna = True ) parameter axis It is a parameter of integer or string type.
Pandas DataFrame sort_index() Function
Publish Date:2025/05/01 Views:183 Category:Python
-
This tutorial explains how to use pandas.DataFrame.sort_index() the sort method to sort a Pandas DataFrame based on its index. We will use the DataFrame shown in the above example to explain how to sort a Pandas DataFrame based on the index