JIYIK CN >

Current Location:Home > Learning > PROGRAM > Python >

Pandas DataFrame.describe() Function

Author:JIYIK Last Updated:2025/05/01 Views:

Python Pandas DataFrame.describe() function returns the statistics of a DataFrame.


pandas.DataFrame.describe()grammar

DataFrame.describe(
    percentiles=None, include=None, exclude=None, datetime_is_numeric=False
)

parameter

percentiles This parameter tells the output which percentiles to include, all values ​​should be between 0 and 1. The default value is [.25, .5, .75]to return the 25th, 50th and 75th percentiles.
include The data type to be included in the output. It has three options. all: All columns of the input will be included in the output. List-like data type: Limits the results to the provided data type. None: The results will include all numeric columns.
exclude The data types to exclude from the output. It has two options. Similar to a list of data types: Exclude the provided data types from the result. NoneThe result will not include anything.
datetime_is_numeric Boolean parameter. It specifies whether we should treat the datetime type as a numeric type.

return

It returns a statistical summary of the passed Seriesor DataFrame.


Example Code: DataFrame.describe()Method to Find DataFrame Statistics

import pandas as pd

dataframe=pd.DataFrame({'Attendance': {0: 60, 1: 100, 2: 80,3: 78,4: 95},
                        'Name': {0: 'Olivia', 1: 'John', 2: 'Laura',3: 'Ben',4: 'Kevin'},
                        'Obtained Marks': {0: 90, 1: 75, 2: 82, 3: 64, 4: 45}})

print("The Original Data frame is: \n")
print(dataframe)

dataframe1 = dataframe.describe()
print("Statistics are: \n")
print(dataframe1)

Output:

The Original Data frame is: 

   Attendance    Name  Obtained Marks
0          60  Olivia              90
1         100    John              75
2          80   Laura              82
3          78     Ben              64
4          95   Kevin              45
Statistics are: 

       Attendance  Obtained Marks
count    5.000000        5.000000
mean    82.600000       71.200000
std     15.773395       17.484279
min     60.000000       45.000000
25%     78.000000       64.000000
50%     80.000000       75.000000
75%     95.000000       82.000000
max    100.000000       90.000000

This function returns a statistical summary of the DataFrame. We did not pass any arguments, so the function used all default values.


Sample code: DataFrame.describe()Method to find statistics for each column

We will use includethe parameter to find statistics for all columns.

import pandas as pd
dataframe=pd.DataFrame({'Attendance': {0: 60, 1: 100, 2: 80,3: 78,4: 95},
                        'Name': {0: 'Olivia', 1: 'John', 2: 'Laura',3: 'Ben',4: 'Kevin'},
                        'Obtained Marks': {0: 90, 1: 75, 2: 82, 3: 64, 4: 45}})
print("The Original Data frame is: \n")
print(dataframe)

dataframe1 = dataframe.describe(include='all')
print("Statistics are: \n")
print(dataframe1)

Output:

The Original Data frame is: 

   Attendance    Name  Obtained Marks
0          60  Olivia              90
1         100    John              75
2          80   Laura              82
3          78     Ben              64
4          95   Kevin              45
Statistics are: 

        Attendance   Name  Obtained Marks
count     5.000000      5        5.000000
unique         NaN      5             NaN
top            NaN  Kevin             NaN
freq           NaN      1             NaN
mean     82.600000    NaN       71.200000
std      15.773395    NaN       17.484279
min      60.000000    NaN       45.000000
25%      78.000000    NaN       64.000000
50%      80.000000    NaN       75.000000
75%      95.000000    NaN       82.000000
max     100.000000    NaN       90.000000

This function returns summary statistics for all columns in the DataFrame.


Sample code: DataFrame.describe()Method to find numeric column statistics

Now we will use excludethe parameter to find statistics only for numeric columns.

import pandas as pd

dataframe=pd.DataFrame({'Attendance': {0: 60, 1: 100, 2: 80,3: 78,4: 95},
                        'Name': {0: 'Olivia', 1: 'John', 2: 'Laura',3: 'Ben',4: 'Kevin'},
                        'Obtained Marks': {0: 90, 1: 75, 2: 82, 3: 64, 4: 45}})
print("The Original Data frame is: \n")
print(dataframe)

dataframe1 = dataframe.describe(exclude=[object])
print("Statistics are: \n")
print(dataframe1)

Output:

The Original Data frame is: 

   Attendance    Name  Obtained Marks
0          60  Olivia              90
1         100    John              75
2          80   Laura              82
3          78     Ben              64
4          95   Kevin              45
Statistics are: 

       Attendance  Obtained Marks
count    5.000000        5.000000
mean    82.600000       71.200000
std     15.773395       17.484279
min     60.000000       45.000000
25%     78.000000       64.000000
50%     80.000000       75.000000
75%     95.000000       82.000000
max    100.000000       90.000000

We have excluded data types object.

Previous:Pandas DataFrame.astype() Function

Next: None

For reprinting, please send an email to 1244347461@qq.com for approval. After obtaining the author's consent, kindly include the source as a link.

Article URL:

Related Articles

Pandas DataFrame.astype() Function

Publish Date:2025/05/01 Views:160 Category:Python

Python Pandas DataFrame.astype() function changes the data type of an object to the specified data type. pandas.DataFrame.astype() grammar DataFrame . astype(dtype, copy = True , errors = "raise" ) parameter dtype The data type we want to a

Pandas DataFrame.to_dict() Function

Publish Date:2025/05/01 Views:188 Category:Python

Python Pandas DataFrame.to_dict() function converts the given DataFrame to a dictionary. pandas.DataFrame.to_dict() Syntax DataFrame . to_dict(orient = 'dict' , into = class ' dict ' ) parameter orient This parameter determines the type of

Pandas DataFrame.reset_index() Function

Publish Date:2025/05/01 Views:140 Category:Python

Python Pandas DataFrame.reset_index() function resets the index of the given DataFrame. It replaces the old index with the default index. If the given DataFrame has a MultiIndex, then this method removes all the levels. pandas.DataFrame.rep

Pandas DataFrame.resample() Function

Publish Date:2025/05/01 Views:78 Category:Python

Python Pandas DataFrame.resample() function resamples time series data. pandas.DataFrame.resample() Syntax DataFrame . resample( rule, axis = 0 , closed = None , label = None , convention = "start" , kind = None , loffset = None , base = No

Pandas DataFrame.insert() Function

Publish Date:2025/05/01 Views:116 Category:Python

Python Pandas DataFrame.insert() function inserts a column at the specified position into the DataFrame. pandas.DataFrame.insert() Syntax DataFrame . insert(loc, column, value, allow_duplicates = False ) parameter loc It is an integer param

Pandas DataFrame.idxmax() Function

Publish Date:2025/05/01 Views:79 Category:Python

Python Pandas DataFrame.idxmax() function returns the index of the maximum value in a row or column. pandas.DataFrame.idxmax() Syntax DataFrame . idxmax(axis = 0 , skipna = True ) parameter axis It is a parameter of integer or string type.

Pandas DataFrame sort_index() Function

Publish Date:2025/05/01 Views:183 Category:Python

This tutorial explains how to use pandas.DataFrame.sort_index() the sort method to sort a Pandas DataFrame based on its index. We will use the DataFrame shown in the above example to explain how to sort a Pandas DataFrame based on the index

Pandas cut function

Publish Date:2025/05/01 Views:165 Category:Python

pandas.cut() The function can distribute the given data into a range, which can also be called bins . We will use the following DataFrame in this article. import pandas as pd df = pd . DataFrame( { "Name" : [ "Anish" , "Birat" , "Chirag" ,

Appending to an Empty DataFrame in Pandas

Publish Date:2025/05/01 Views:54 Category:Python

As we learned earlier, Pandas in Python is an open source module that we can use for data analysis and making machine learning models. It is Numpy used along with another package called as they go hand in hand to support multidimensional ar

Scan to Read All Tech Tutorials

Social Media
  • https://www.github.com/onmpw
  • qq:1244347461

Recommended

Tags

Scan the Code
Easier Access Tutorial