Pandas DataFrame.ix[] Function
Python Pandas DataFrame.ix[] function slices rows or columns based on the value of the argument.
pandas.DataFrame.ix[]
grammar
DataFrame.ix[index = None,
label = None]
parameter
index |
Integer or list of integers used to slice row indices. |
label |
String, integer, list of strings, or integer, used for slice column labels. |
return
It returns the modified DataFrame.
Sample code: DataFrame.ix[]
How to split row index
import pandas as pd
dataframe=pd.DataFrame({'Attendance': {0: 60, 1: 100, 2: 80,3: 78,4: 95},
'Name': {0: 'Olivia', 1: 'John', 2: 'Laura',3: 'Ben',4: 'Kevin'},
'Obtained Marks': {0: 90, 1: 75, 2: 82, 3: 64, 4: 45}})
print("The Original Data frame is: \n")
print(dataframe)
dataframe1 = dataframe.ix[:2, ]
print("The Modified Data frame is: \n")
print(dataframe1)
Output:
The Original Data frame is:
Attendance Name Obtained Marks
0 60 Olivia 90
1 100 John 75
2 80 Laura 82
3 78 Ben 64
4 95 Kevin 45
The Modified Data frame is:
Attendance Name Obtained Marks
0 60 Olivia 90
1 100 John 75
2 80 Laura 82
It has sliced the row indices 3
and 4
.
Example code: DataFrame.ix[]
Method for slicing column index
In Pandas, to slice columns of a DataFrame, we will ix[]
call the slice function on the column labels using indexing.
import pandas as pd
dataframe=pd.DataFrame({'Attendance': {0: 60, 1: 100, 2: 80,3: 78,4: 95},
'Name': {0: 'Olivia', 1: 'John', 2: 'Laura',3: 'Ben',4: 'Kevin'},
'Obtained Marks': {0: 90, 1: 75, 2: 82, 3: 64, 4: 45}})
print("The Original Data frame is: \n")
print(dataframe)
dataframe1 = dataframe.ix[ : , :1]
print("The Modified Data frame is: \n")
print(dataframe1)
Output:
The Original Data frame is:
Attendance Name Obtained Marks
0 60 Olivia 90
1 100 John 75
2 80 Laura 82
3 78 Ben 64
4 95 Kevin 45
The Modified Data frame is:
Attendance
0 60
1 100
2 80
3 78
4 95
Now only the first column of the DataFrame is returned.
Example code: DataFrame.ix[]
How to split column labels
We can also pass the column label as an argument to keep that column and slice the other columns.
import pandas as pd
dataframe=pd.DataFrame({'Attendance': {0: 60, 1: 100, 2: 80,3: 78,4: 95},
'Name': {0: 'Olivia', 1: 'John', 2: 'Laura',3: 'Ben',4: 'Kevin'},
'Obtained Marks': {0: 90, 1: 75, 2: 82, 3: 64, 4: 45}})
print("The Original Data frame is: \n")
print(dataframe)
dataframe1 = dataframe.ix[ : ,"Name"]
print("The Modified Data frame is: \n")
print(dataframe1)
Output:
The Original Data frame is:
Attendance Name Obtained Marks
0 60 Olivia 90
1 100 John 75
2 80 Laura 82
3 78 Ben 64
4 95 Kevin 45
The Modified Data frame is:
0 Olivia
1 John
2 Laura
3 Ben
4 Kevin
Name: Name, dtype: object
The function preserves Name
the column while slicing the other columns. But you should notice that the function preserves Name
the values of the column and slices its labels.
For reprinting, please send an email to 1244347461@qq.com for approval. After obtaining the author's consent, kindly include the source as a link.
Related Articles
Pandas DataFrame.describe() Function
Publish Date:2025/05/01 Views:120 Category:Python
-
Python Pandas DataFrame.describe() function returns the statistics of a DataFrame. pandas.DataFrame.describe() grammar DataFrame . describe( percentiles = None , include = None , exclude = None , datetime_is_numeric = False ) parameter perc
Pandas DataFrame.astype() Function
Publish Date:2025/05/01 Views:160 Category:Python
-
Python Pandas DataFrame.astype() function changes the data type of an object to the specified data type. pandas.DataFrame.astype() grammar DataFrame . astype(dtype, copy = True , errors = "raise" ) parameter dtype The data type we want to a
Pandas DataFrame.to_dict() Function
Publish Date:2025/05/01 Views:188 Category:Python
-
Python Pandas DataFrame.to_dict() function converts the given DataFrame to a dictionary. pandas.DataFrame.to_dict() Syntax DataFrame . to_dict(orient = 'dict' , into = class ' dict ' ) parameter orient This parameter determines the type of
Pandas DataFrame.reset_index() Function
Publish Date:2025/05/01 Views:140 Category:Python
-
Python Pandas DataFrame.reset_index() function resets the index of the given DataFrame. It replaces the old index with the default index. If the given DataFrame has a MultiIndex, then this method removes all the levels. pandas.DataFrame.rep
Pandas DataFrame.resample() Function
Publish Date:2025/05/01 Views:78 Category:Python
-
Python Pandas DataFrame.resample() function resamples time series data. pandas.DataFrame.resample() Syntax DataFrame . resample( rule, axis = 0 , closed = None , label = None , convention = "start" , kind = None , loffset = None , base = No
Pandas DataFrame.insert() Function
Publish Date:2025/05/01 Views:116 Category:Python
-
Python Pandas DataFrame.insert() function inserts a column at the specified position into the DataFrame. pandas.DataFrame.insert() Syntax DataFrame . insert(loc, column, value, allow_duplicates = False ) parameter loc It is an integer param
Pandas DataFrame.idxmax() Function
Publish Date:2025/05/01 Views:79 Category:Python
-
Python Pandas DataFrame.idxmax() function returns the index of the maximum value in a row or column. pandas.DataFrame.idxmax() Syntax DataFrame . idxmax(axis = 0 , skipna = True ) parameter axis It is a parameter of integer or string type.
Pandas DataFrame sort_index() Function
Publish Date:2025/05/01 Views:183 Category:Python
-
This tutorial explains how to use pandas.DataFrame.sort_index() the sort method to sort a Pandas DataFrame based on its index. We will use the DataFrame shown in the above example to explain how to sort a Pandas DataFrame based on the index
Pandas cut function
Publish Date:2025/05/01 Views:165 Category:Python
-
pandas.cut() The function can distribute the given data into a range, which can also be called bins . We will use the following DataFrame in this article. import pandas as pd df = pd . DataFrame( { "Name" : [ "Anish" , "Birat" , "Chirag" ,