Pandas DataFrame.resample() Function
Python Pandas DataFrame.resample() function resamples time series data.
pandas.DataFrame.resample()
Syntax
DataFrame.resample(
rule,
axis=0,
closed=None,
label=None,
convention="start",
kind=None,
loffset=None,
base=None,
on=None,
level=None,
origin="start_day",
offset=None,
)
parameter
rule |
It is an offset string or object representing the target transformation. |
axis |
It specifies which axis to use for up or down sampling. For Series , the default is 0, i.e. along the rows. |
closed |
It specifies which side of the bin interval is closed. It has two options: right or left . |
label |
It specifies the edge labels to bin label bin . It has two options: right or left . |
convention |
It has four options: start , end , s or e , and for PeriodIndex only, it uses start or end . |
kind |
It specifies the kind of index generated, with two options: Timestamp or Period. It has two options: timestamp or period . timestamp converts the generated index to a DateTimeIndex, while period converts it to a PeriodIndex. |
loffset |
It adjusts the time stamps for resampling. |
base |
It is an integer. Its default value is 0. |
on |
It indicates the name of the column to be used for resampling instead of the index. The column must be datetime-like. |
level |
It indicates the level name to use for resampling. Levels must be date-like. |
origin |
It is used to adjust the timestamp of the packet. It has three options: epoch , start or start_day . |
offset |
It represents origin the offset to be added to the parameter timedelta . |
Return Value
It returns the resampled object.
Example code: DataFrame.resample()
Method to resample series data by week
import pandas as pd
index = pd.date_range('1/1/2021', periods=30, freq='D')
series = pd.Series(range(30), index=index)
print("The Original Series is: \n")
print(series)
series1= series.resample('W').sum()
print("The Resampled Data is: \n")
print(series1)
Output:
The Original Series is:
2021-01-01 0
2021-01-02 1
2021-01-03 2
2021-01-04 3
2021-01-05 4
2021-01-06 5
2021-01-07 6
2021-01-08 7
2021-01-09 8
2021-01-10 9
2021-01-11 10
2021-01-12 11
2021-01-13 12
2021-01-14 13
2021-01-15 14
2021-01-16 15
2021-01-17 16
2021-01-18 17
2021-01-19 18
2021-01-20 19
2021-01-21 20
2021-01-22 21
2021-01-23 22
2021-01-24 23
2021-01-25 24
2021-01-26 25
2021-01-27 26
2021-01-28 27
2021-01-29 28
2021-01-30 29
Freq: D, dtype: int64
The Resampled Data is:
2021-01-03 3
2021-01-10 42
2021-01-17 91
2021-01-24 140
2021-01-31 159
Freq: W-SUN, dtype: int64
The function returns the sum of the resamples in weekly units.
Example code: DataFrame.resample()
Method to resample Series
data by month
import pandas as pd
index = pd.date_range('1/1/2021', periods=30, freq='D')
series = pd.Series(range(30), index=index)
print("The Original Series is: \n")
print(series)
series1= series.resample('M').sum()
print("The Resampled Data is: \n")
print(series1)
Output:
The Original Series is:
2021-01-01 0
2021-01-02 1
2021-01-03 2
2021-01-04 3
2021-01-05 4
2021-01-06 5
2021-01-07 6
2021-01-08 7
2021-01-09 8
2021-01-10 9
2021-01-11 10
2021-01-12 11
2021-01-13 12
2021-01-14 13
2021-01-15 14
2021-01-16 15
2021-01-17 16
2021-01-18 17
2021-01-19 18
2021-01-20 19
2021-01-21 20
2021-01-22 21
2021-01-23 22
2021-01-24 23
2021-01-25 24
2021-01-26 25
2021-01-27 26
2021-01-28 27
2021-01-29 28
2021-01-30 29
Freq: D, dtype: int64
The Resampled Data is:
2021-01-31 435
Freq: M, dtype: int64
The function returns the sum resampled by month.
For reprinting, please send an email to 1244347461@qq.com for approval. After obtaining the author's consent, kindly include the source as a link.
Related Articles
Pandas DataFrame.astype() Function
Publish Date:2025/05/01 Views:160 Category:Python
-
Python Pandas DataFrame.astype() function changes the data type of an object to the specified data type. pandas.DataFrame.astype() grammar DataFrame . astype(dtype, copy = True , errors = "raise" ) parameter dtype The data type we want to a
Pandas DataFrame.insert() Function
Publish Date:2025/05/01 Views:116 Category:Python
-
Python Pandas DataFrame.insert() function inserts a column at the specified position into the DataFrame. pandas.DataFrame.insert() Syntax DataFrame . insert(loc, column, value, allow_duplicates = False ) parameter loc It is an integer param
Pandas DataFrame.idxmax() Function
Publish Date:2025/05/01 Views:79 Category:Python
-
Python Pandas DataFrame.idxmax() function returns the index of the maximum value in a row or column. pandas.DataFrame.idxmax() Syntax DataFrame . idxmax(axis = 0 , skipna = True ) parameter axis It is a parameter of integer or string type.
Pandas DataFrame sort_index() Function
Publish Date:2025/05/01 Views:183 Category:Python
-
This tutorial explains how to use pandas.DataFrame.sort_index() the sort method to sort a Pandas DataFrame based on its index. We will use the DataFrame shown in the above example to explain how to sort a Pandas DataFrame based on the index
Pandas cut function
Publish Date:2025/05/01 Views:165 Category:Python
-
pandas.cut() The function can distribute the given data into a range, which can also be called bins . We will use the following DataFrame in this article. import pandas as pd df = pd . DataFrame( { "Name" : [ "Anish" , "Birat" , "Chirag" ,
Appending to an Empty DataFrame in Pandas
Publish Date:2025/05/01 Views:54 Category:Python
-
As we learned earlier, Pandas in Python is an open source module that we can use for data analysis and making machine learning models. It is Numpy used along with another package called as they go hand in hand to support multidimensional ar
Pandas DataFrame DataFrame.query() function
Publish Date:2025/04/30 Views:108 Category:Python
-
The pandas.DataFrame.query() method filters the rows of the caller DataFrame using the given query expression. pandas.DataFrame.query() grammar DataFrame . query(expr, inplace = False , ** kwargs) parameter expr Filter rows based on query e
Pandas DataFrame DataFrame.min() function
Publish Date:2025/04/30 Views:162 Category:Python
-
Python Pandas DataFrame.min() function gets the minimum value of the DataFrame object along the specified axis. pandas.DataFrame.min() grammar DataFrame . mean(axis = None , skipna = None , level = None , numeric_only = None , ** kwargs) pa
Pandas DataFrame DataFrame.mean() function
Publish Date:2025/04/30 Views:86 Category:Python
-
Python Pandas DataFrame.mean() function calculates the mean of the values of the DataFrame object over the specified axis. pandas.DataFrame.mean() grammar DataFrame . mean(axis = None , skipna = None , level = None , numeric_only = No