Pandas rename multiple columns
DataFrame is a two-dimensional labeled data structure. It is a heterogeneous data structure with variable size.
A DataFrame contains labeled axes called rows and columns.
This tutorial will discuss different ways to rename multiple columns of a DataFrame using python.
Use Pandas's rename()
function to rename multiple columns
The Pandas library provides rename()
functions for renaming DataFrame columns.
rename()
The function takes a mapper
DataFrame, which is a dictionary-like data structure containing the renamed columns as keys and the names as values. It returns a DataFrame.
In-place modifications can also be inplace = True
done via settings.
grammar:
pandas.rename(mapper)
Following are rename()
the steps to rename multiple columns using method.
-
Import the Pandas library.
-
Pass the Mapper to
rename()
the method. -
rename()
The method will return a data frame with the column renamed. -
Print the DataFrame.
The following code is the implementation of the above method.
# importing pandas library
import pandas as pd
# creating a dataframe
df = pd.DataFrame(
{
"course": ["C", "Python", "Java"],
"Mentor": ["alex", "alice", "john"],
"cost": [1000, 2000, 3000],
}
)
# Dataframe before renaming
print("\n Before Renaming")
print(df)
# renaming the multiple columns by index
df = df.rename(columns={df.columns[0]: "subject", df.columns[2]: "price"})
# Dataframe after renaming
print("\n After Renaming")
print(df)
Output before renaming:
course | Mentor | cost |
---|---|---|
C | Alex | 1000 |
Python | alice | 2000 |
Java | john | 3000 |
Output after renaming:
subject | Mentor | price |
---|---|---|
C | Alex | 1000 |
Python | alice | 2000 |
Java | john | 3000 |
DataFrame.column.values
Renaming multiple columns using Pandas
DataFrame.column.values
All column names will be returned, we can use the index to modify the column name. column.values
An array of indexes will be returned.
Here are the steps to rename multiple columns using this method:
- Import the Pandas library.
- Use
DataFrame.column.values
to retrieve an array of column names. - Change the name of a column by passing its index.
- Print the data frame.
The following code is the implementation of the above method.
# importing pandas library
import pandas as pd
# creating a dataframe
df = pd.DataFrame(
{
"course": ["C", "Python", "Java"],
"Mentor": ["alex", "alice", "john"],
"cost": [1000, 2000, 3000],
}
)
# Dataframe before renaming
print("\n Before Renaming")
print(df)
# renaming the multiple columns by index
df.columns.values[0:2] = ["Subject", "Teacher"]
# Dataframe after renaming
print("\n After Renaming")
print(df)
Output before renaming:
course | Mentor | cost |
---|---|---|
C | Alex | 1000 |
Python | alice | 2000 |
Java | john | 3000 |
Output after renaming:
Subject | Teacher | cost |
---|---|---|
C | Alex | 1000 |
Python | alice | 2000 |
Java | john | 3000 |
For reprinting, please send an email to 1244347461@qq.com for approval. After obtaining the author's consent, kindly include the source as a link.
Related Articles
Convert Pandas to CSV without index
Publish Date:2025/05/01 Views:159 Category:Python
-
As you know, an index can be thought of as a reference point used to store and access records in a DataFrame. They are unique for each row and usually range from 0 to the last row of the DataFrame, but we can also have serial numbers, dates
Convert Pandas DataFrame to Dictionary
Publish Date:2025/05/01 Views:197 Category:Python
-
This tutorial will show you how to convert a Pandas DataFrame into a dictionary with the index column elements as keys and the corresponding elements of other columns as values. We will use the following DataFrame in the article. import pan
Convert Pandas DataFrame columns to lists
Publish Date:2025/05/01 Views:191 Category:Python
-
When working with Pandas DataFrames in Python, you often need to convert the columns of the DataFrame into Python lists. This process is very important for various data manipulation and analysis tasks. Fortunately, Pandas provides several m
Subtracting Two Columns in Pandas DataFrame
Publish Date:2025/05/01 Views:120 Category:Python
-
Pandas can handle very large data sets and has a variety of functions and operations that can be applied to the data. One of the simple operations is to subtract two columns and store the result in a new column, which we will discuss in thi
Dropping columns by index in Pandas DataFrame
Publish Date:2025/05/01 Views:99 Category:Python
-
DataFrames can be very large and can contain hundreds of rows and columns. It is necessary to master the basic maintenance operations of DataFrames, such as deleting multiple columns. We can use dataframe.drop() the method to delete columns
Pandas Copy DataFrame
Publish Date:2025/05/01 Views:53 Category:Python
-
This tutorial will show you how to DataFrame.copy() copy a DataFrame object using the copy method. import pandas as pd items_df = pd . DataFrame( { "Id" : [ 302 , 504 , 708 ], "Cost" : [ "300" , "400" , "350" ], } ) print (items_df) Output:
Pandas DataFrame.ix[] Function
Publish Date:2025/05/01 Views:168 Category:Python
-
Python Pandas DataFrame.ix[] function slices rows or columns based on the value of the argument. pandas.DataFrame.ix[] grammar DataFrame . ix[index = None , label = None ] parameter index Integer or list of integers used to slice row indice
Pandas DataFrame.describe() Function
Publish Date:2025/05/01 Views:120 Category:Python
-
Python Pandas DataFrame.describe() function returns the statistics of a DataFrame. pandas.DataFrame.describe() grammar DataFrame . describe( percentiles = None , include = None , exclude = None , datetime_is_numeric = False ) parameter perc
Pandas DataFrame.astype() Function
Publish Date:2025/05/01 Views:160 Category:Python
-
Python Pandas DataFrame.astype() function changes the data type of an object to the specified data type. pandas.DataFrame.astype() grammar DataFrame . astype(dtype, copy = True , errors = "raise" ) parameter dtype The data type we want to a