How to Delete Rows Based on Column Values in Pandas DataFrame
We will look at methods to delete rows based on by using .drop
(with and without loc
) and 布尔掩码
conditions checking column values .DataFrame
Deleting rows of column values in .drop
Pandas usingDataFrame
.drop
The method accepts one or a list of column names and removes the rows or columns. For rows, we set the parameter axis=0
and for columns, we set the parameter ( by axis=1
default, ). We can also get the and series column values, based on the condition applied in Pandas .axis
0
True
False
DataFrame
Sample code:
# python 3.x
import pandas as pd
fruit_list = [
("Orange", 34, "Yes"),
("Mango", 24, "No"),
("banana", 14, "No"),
("Apple", 44, "Yes"),
("Pineapple", 64, "No"),
("Kiwi", 84, "Yes"),
]
# Create a DataFrame object
df = pd.DataFrame(fruit_list, columns=["Name", "Price", "Stock"])
# Get names of indexes for which column Stock has value No
indexNames = df[df["Stock"] == "No"].index
# Delete these row indexes from dataFrame
df.drop(indexNames, inplace=True)
print(df)
Output:
Name Price Stock
0 Orange 34 Yes
3 Apple 44 Yes
5 Kiwi 84 Yes
We can also achieve similar results by df.drop
using in the method ..loc
df.drop(df.loc[df["Stock"] == "Yes"].index, inplace=True)
We can also delete rows based on multiple column values. In the above example, we can delete the rows with price >=30
and price <=70
.
Sample code:
# python 3.x
import pandas as pd
# List of Tuples
fruit_list = [
("Orange", 34, "Yes"),
("Mango", 24, "No"),
("banana", 14, "No"),
("Apple", 44, "Yes"),
("Pineapple", 64, "No"),
("Kiwi", 84, "Yes"),
]
# Create a DataFrame object
df = pd.DataFrame(fruit_list, columns=["Name", "Price", "Stock"])
indexNames = df[(df["Price"] >= 30) & (df["Price"] <= 70)].index
df.drop(indexNames, inplace=True)
print(df)
Output:
Name Price Stock
1 Mango 24 No
2 banana 14 No
5 Kiwi 84 Yes
The rows where the price is greater than 30 and less than 70 have been deleted.
Boolean Masking Method to Delete Rows in Pandas DataFrame
Boolean masking is the best and simplest way boolean masking
to delete rows in Pandas based on column values .DataFrame
Sample code:
# python 3.x
import pandas as pd
# List of Tuples
fruit_list = [
("Orange", 34, "Yes"),
("Mango", 24, "No"),
("banana", 14, "No"),
("Apple", 44, "Yes"),
("Pineapple", 64, "No"),
("Kiwi", 84, "Yes"),
]
# Create a DataFrame object
df = pd.DataFrame(fruit_list, columns=["Name", "Price", "Stock"])
print(df[df.Price > 40])
print("............................")
print(df[(df.Price > 40) & (df.Stock == "Yes")])
Output:
Name Price Stock
3 Apple 44 Yes
4 Pineapple 64 No
5 Kiwi 84 Yes
............................
Name Price Stock
3 Apple 44 Yes
5 Kiwi 84 Yes
For reprinting, please send an email to 1244347461@qq.com for approval. After obtaining the author's consent, kindly include the source as a link.
Related Articles
Convert Tensor to NumPy array in Python
Publish Date:2025/05/03 Views:85 Category:Python
-
This tutorial will show you how to convert a Tensor to a NumPy array in Python. Use the function in Python Tensor.numpy() to convert a tensor to a NumPy array Eager Execution of TensorFlow library can be used to convert tensor to NumPy arra
Saving NumPy arrays as images in Python
Publish Date:2025/05/03 Views:193 Category:Python
-
In Python, numpy module is used to manipulate arrays. There are many modules available in Python that allow us to read and store images. An image can be thought of as an array of different pixels stored at specific locations with correspond
Transposing a 1D array in NumPy
Publish Date:2025/05/03 Views:98 Category:Python
-
Arrays and matrices form the core of this Python library. The transpose of these arrays and matrices plays a vital role in certain topics such as machine learning. In NumPy, it is easy to calculate the transpose of an array or a matrix. Tra
Find the first index of an element in a NumPy array
Publish Date:2025/05/03 Views:58 Category:Python
-
In this tutorial, we will discuss how to find the first index of an element in a numpy array. Use where() the function to find the first index of an element in a NumPy array The function in the numpy module where() is used to return an arra
Remove Nan values from NumPy array
Publish Date:2025/05/03 Views:118 Category:Python
-
This article discusses some built-in NumPy functions that you can use to remove nan values. Remove Nan values using logical_not() and methods in NumPy isnan() logical_not() is used to apply logical NOT to the elements of an array. isn
Normalizing a vector in Python
Publish Date:2025/05/03 Views:51 Category:Python
-
A common concept in the field of machine learning is to normalize a vector or dataset before passing it to the algorithm. When we talk about normalizing a vector, we say that its vector magnitude is 1, being a unit vector. In this tutorial,
Calculating Euclidean distance in Python
Publish Date:2025/05/03 Views:128 Category:Python
-
In the world of mathematics, the shortest distance between two points in any dimension is called the Euclidean distance. It is the square root of the sum of the squares of the differences between the two points. In Python, the numpy, scipy
Element-wise division in Python NumPy
Publish Date:2025/05/03 Views:199 Category:Python
-
This tutorial shows you how to perform element-wise division on NumPy arrays in Python. NumPy Element-Wise Division using numpy.divide() the function If we have two arrays and want to divide each element of the first array with each element
Convert 3D array to 2D array in Python
Publish Date:2025/05/03 Views:79 Category:Python
-
In this tutorial, we will discuss the methods to convert 3D array to 2D array in Python. numpy.reshape() Convert 3D array to 2D array using function in Python [ numpy.reshape() Function](numpy.reshape - NumPy v1.20 manual)Changes the shape