Appending to an Empty DataFrame in Pandas
As we learned earlier, Pandas in Python is an open source module that we can use for data analysis and making machine learning models. It is Numpy
used along with another package called as they go hand in hand to support multidimensional arrays.
Many data science modules can be used with Pandas in the Python ecosystem. We will learn different operations to append to an empty DataFrame in Pandas.
A DataFrame is two-dimensional and potentially heterogeneous data in a tabular form.
This tutorial teaches how to add rows and columns to an empty DataFrame in Pandas using Python. We will look at three different ways to add data to an empty DataFrame, as there are multiple ways.
Creating an Empty DataFrame and Adding Rows and Columns in Pandas
Below is the code to import the required packages, make an empty DataFrame, and append the columns.
# import pandas library as pd
import pandas as pd
# create an Empty DataFrame object
df = pd.DataFrame()
print(df)
# append columns to an empty DataFrame
df["Name"] = ["Preet", "Parin", "Rajesh"]
df["Articles"] = [97, 600, 200]
df["Improved"] = [2200, 75, 100]
print(df)
The output of the above code snippet is as follows.
Empty DataFrame
Columns: []
Index: []
Name Articles Improved
0 Preet 97 2200
1 Parin 600 75
2 Rajesh 200 100
Before we add columns and rows, the DataFrame is empty. Hence, printing the empty DataFrame gives us the output Empty DataFrame, Columns: [], Index: []
as the output, which is expected since the data is empty.
Append rows to an empty DataFrame with Pandas columns
In this method, the DataFrame will be empty but will have predefined column names and our only task is to insert data in the rows below it.
Below is the code for the above method, we initially import the library Pandas, create a DataFrame with columns and then append the values in the form of rows.
# import pandas library as pd
import pandas as pd
# create an Empty DataFrame
# object With column names only
df = pd.DataFrame(columns=["Name", "Articles", "Improved"])
print(df)
# append rows to an empty DataFrame
df = df.append({"Name": "Preet", "Articles": 97, "Improved": 2200}, ignore_index=True)
df = df.append({"Name": "Parin", "Articles": 30, "Improved": 50}, ignore_index=True)
df = df.append({"Name": "Rajesh", "Articles": 17, "Improved": 220}, ignore_index=True)
print(df)
This code will give us the following output.
Empty DataFrame
Columns: [Name, Articles, Improved]
Index: []
Name Articles Improved
0 Preet 97 2200
1 Parin 30 50
2 Rajesh 17 220
As we can see, since we have added the names of the columns in the DataFrame, the output Columns: [Name, Articles, Improvement]
consists of which are the column names in an array.
The following output is because we used .append()
the function.
Use the Pandas .loc()
function to create an empty DataFrame, including a column with an index and additional rows
The retrieve method in Pandas .loc()
helps the user to retrieve values from DataFrame easily without any complexity. The values in a particular row and column can be accessed based on the index value passed in the function.
In this method, we will create an empty DataFrame and the column names. Each column will be identified using the index to access it.
Next we will append the rows one by one.
The code demonstrating this approach is given below.
# import pandas library as pd
import pandas as pd
# create an Empty DataFrame object With
# column names and indices
df = pd.DataFrame(columns=["Name", "Articles", "Improved"], index=["a", "b", "c"])
print("Empty DataFrame With NaN values : \n\n", df)
# adding rows to an empty
# dataframe at existing index
df.loc["a"] = ["Preet", 50, 100]
df.loc["b"] = ["Parin", 60, 120]
df.loc["c"] = ["Rajesh", 30, 60]
print(df)
The output of the code given above is as follows.
Empty DataFrame With NaN values :
Name Articles Improved
a NaN NaN NaN
b NaN NaN NaN
c NaN NaN NaN
Name Articles Improved
a Preet 50 100
b Parin 60 120
c Rajesh 30 60
As we can observe, NaN
the values in the first table are there because we mentioned the index, but the values are still empty.
Providing the number of indexes will bind the table to that many values for that particular instance. Increasing the number of indexes allows more values to be inserted.
So, in this tutorial, we learned three different ways to append values to a DataFrame in Pandas.
For reprinting, please send an email to 1244347461@qq.com for approval. After obtaining the author's consent, kindly include the source as a link.
Related Articles
Pandas DataFrame.astype() Function
Publish Date:2025/05/01 Views:160 Category:Python
-
Python Pandas DataFrame.astype() function changes the data type of an object to the specified data type. pandas.DataFrame.astype() grammar DataFrame . astype(dtype, copy = True , errors = "raise" ) parameter dtype The data type we want to a
Pandas DataFrame DataFrame.query() function
Publish Date:2025/04/30 Views:108 Category:Python
-
The pandas.DataFrame.query() method filters the rows of the caller DataFrame using the given query expression. pandas.DataFrame.query() grammar DataFrame . query(expr, inplace = False , ** kwargs) parameter expr Filter rows based on query e
Pandas DataFrame DataFrame.min() function
Publish Date:2025/04/30 Views:162 Category:Python
-
Python Pandas DataFrame.min() function gets the minimum value of the DataFrame object along the specified axis. pandas.DataFrame.min() grammar DataFrame . mean(axis = None , skipna = None , level = None , numeric_only = None , ** kwargs) pa
Pandas DataFrame DataFrame.mean() function
Publish Date:2025/04/30 Views:86 Category:Python
-
Python Pandas DataFrame.mean() function calculates the mean of the values of the DataFrame object over the specified axis. pandas.DataFrame.mean() grammar DataFrame . mean(axis = None , skipna = None , level = None , numeric_only = No
Pandas DataFrame DataFrame.isin() function
Publish Date:2025/04/30 Views:133 Category:Python
-
The pandas.DataFrame.isin(values) function checks whether each element in the caller DataFrame contains values the value specified in the input . pandas.DataFrame.isin(values) grammar DataFrame . isin(values) parameter values iterable - lis
Pandas DataFrame DataFrame.groupby() function
Publish Date:2025/04/30 Views:161 Category:Python
-
pandas.DataFrame.groupby() takes a DataFrame as input and divides the DataFrame into groups based on a given criterion. We can use groupby() the method to easily process large datasets. pandas.DataFrame.groupby() grammar DataFrame . groupby
Pandas DataFrame DataFrame.fillna() function
Publish Date:2025/04/30 Views:61 Category:Python
-
The pandas.DataFrame.fillna() function replaces the values DataFrame in NaN with a certain value. pandas.DataFrame.fillna() grammar DataFrame . fillna( value = None , method = None , axis = None , inplace = False , limit = None , down
Pandas DataFrame DataFrame.dropna() function
Publish Date:2025/04/30 Views:182 Category:Python
-
The pandas.DataFrame.dropna() function removes null values (missing values) from a DataFrame by dropping rows or columns that contain null values DataFrame . NaN ( Not a Number ) and NaT ( Not a Time ) represent null values. DataFrame
Pandas DataFrame DataFrame.assign() function
Publish Date:2025/04/30 Views:55 Category:Python
-
Python Pandas DataFrame.assign() function assigns new columns to DataFrame . pandas.DataFrame.assign() grammar DataFrame . assign( ** kwargs) parameter **kwargs Keyword arguments, DataFrame the column names to be assigned to are passed as k