JIYIK CN >

Current Location:Home > Learning > PROGRAM > Python >

The meaning of axis in Pandas

Author:JIYIK Last Updated:2025/04/30 Views:

This tutorial explains axisthe meaning of the parameters used in various methods of Pandas objects like DataFrames and Series.

import pandas as pd

empl_df = pd.DataFrame(
    {
        "Name": ["Jon", "Willy", "Mike", "Luna", "Sam", "Aliza"],
        "Age": [30, 33, 35, 30, 30, 31],
        "Weight(KG)": [75, 75, 80, 70, 73, 70],
        "Height(meters)": [1.7, 1.7, 1.85, 1.75, 1.8, 1.75],
        "Salary($)": [3300, 3500, 4000, 3050, 3500, 3700],
    }
)

print(empl_df)

Output:

    Name  Age  Weight(KG)  Height(meters)  Salary($)
0    Jon   30          75            1.70       3300
1  Willy   33          75            1.70       3500
2   Mike   35          80            1.85       4000
3   Luna   30          70            1.75       3050
4    Sam   30          73            1.80       3500
5  Aliza   31          70            1.75       3700

We use DataFrame to explain how to use parameters empl_dfin Pandas methods .axis


axisUsing parameters in Pandas methods

axisThe parameter specifies the direction in which to apply a particular method or function on a DataFrame. axis=0represents that the function is applied column-wise, and axis=1represents that the function is applied row-wise on a DataFrame.

If we apply the function column-wise, we will get a single-row result; if we apply the function row-wise, we will get a single-column DataFrame.

Example: Using in Pandas methodsaxis=0

import pandas as pd

empl_df = pd.DataFrame(
    {
        "Name": ["Jon", "Willy", "Mike", "Luna", "Sam", "Aliza"],
        "Age": [30, 33, 35, 30, 30, 31],
        "Weight(KG)": [75, 75, 80, 70, 73, 70],
        "Height(meters)": [1.7, 1.7, 1.85, 1.75, 1.8, 1.75],
        "Salary($)": [3300, 3500, 4000, 3050, 3500, 3700],
    }
)
print("The Employee DataFrame is:")
print(empl_df, "\n")

print("The DataFrame with mean values of each column is:")
print(empl_df.mean(axis=0))

Output:

The Employee DataFrame is:
    Name  Age  Weight(KG)  Height(meters)  Salary($)
0    Jon   30          75            1.70       3300
1  Willy   33          75            1.70       3500
2   Mike   35          80            1.85       4000
3   Luna   30          70            1.75       3050
4    Sam   30          73            1.80       3500
5  Aliza   31          70            1.75       3700

The DataFrame with mean values of each column is:
Age                 31.500000
Weight(KG)          73.833333
Height(meters)       1.758333
Salary($)         3508.333333
dtype: float64

It calculates empl_dfthe column-wise mean of a DataFrame. The mean is calculated only for columns that have values.

If we set axis=0, it will calculate the mean of each column by averaging the row values ​​of that column.

Example using Pandas methodaxis=1

import pandas as pd

empl_df = pd.DataFrame(
    {
        "Name": ["Jon", "Willy", "Mike", "Luna", "Sam", "Aliza"],
        "Age": [30, 33, 35, 30, 30, 31],
        "Weight(KG)": [75, 75, 80, 70, 73, 70],
        "Height(meters)": [1.7, 1.7, 1.85, 1.75, 1.8, 1.75],
        "Salary($)": [3300, 3500, 4000, 3050, 3500, 3700],
    }
)
print("The Employee DataFrame is:")
print(empl_df, "\n")

print("The DataFrame with mean values of each row is:")
print(empl_df.mean(axis=1))

Output:

The Employee DataFrame is:
    Name  Age  Weight(KG)  Height(meters)  Salary($)
0    Jon   30          75            1.70       3300
1  Willy   33          75            1.70       3500
2   Mike   35          80            1.85       4000
3   Luna   30          70            1.75       3050
4    Sam   30          73            1.80       3500
5  Aliza   31          70            1.75       3700

The DataFrame with mean values of each row is:
0     851.6750
1     902.4250
2    1029.2125
3     787.9375
4     901.2000
5     950.6875
dtype: float64

It calculates empl_dfthe row mean of the DataFrame, in other words, it will calculate the mean of each row by averaging the values ​​of the numeric columns of that row. We will get a single column at the end for the mean of each row.

For reprinting, please send an email to 1244347461@qq.com for approval. After obtaining the author's consent, kindly include the source as a link.

Article URL:

Related Articles

Pandas DataFrame DataFrame.query() function

Publish Date:2025/04/30 Views:107 Category:Python

The pandas.DataFrame.query() method filters the rows of the caller DataFrame using the given query expression. pandas.DataFrame.query() grammar DataFrame . query(expr, inplace = False , ** kwargs) parameter expr Filter rows based on query e

Pandas DataFrame DataFrame.min() function

Publish Date:2025/04/30 Views:162 Category:Python

Python Pandas DataFrame.min() function gets the minimum value of the DataFrame object along the specified axis. pandas.DataFrame.min() grammar DataFrame . mean(axis = None , skipna = None , level = None , numeric_only = None , ** kwargs) pa

Pandas DataFrame DataFrame.mean() function

Publish Date:2025/04/30 Views:85 Category:Python

Python Pandas DataFrame.mean() function calculates the mean of the values ​​of the DataFrame object over the specified axis. pandas.DataFrame.mean() grammar DataFrame . mean(axis = None , skipna = None , level = None , numeric_only = No

Pandas DataFrame DataFrame.isin() function

Publish Date:2025/04/30 Views:133 Category:Python

The pandas.DataFrame.isin(values) function checks whether each element in the caller DataFrame contains values the value specified in the input . pandas.DataFrame.isin(values) grammar DataFrame . isin(values) parameter values iterable - lis

Pandas DataFrame DataFrame.groupby() function

Publish Date:2025/04/30 Views:161 Category:Python

pandas.DataFrame.groupby() takes a DataFrame as input and divides the DataFrame into groups based on a given criterion. We can use groupby() the method to easily process large datasets. pandas.DataFrame.groupby() grammar DataFrame . groupby

Pandas DataFrame DataFrame.fillna() function

Publish Date:2025/04/30 Views:60 Category:Python

The pandas.DataFrame.fillna() function replaces the values DataFrame ​​in NaN with a certain value. pandas.DataFrame.fillna() grammar DataFrame . fillna( value = None , method = None , axis = None , inplace = False , limit = None , down

Pandas DataFrame DataFrame.dropna() function

Publish Date:2025/04/30 Views:181 Category:Python

The pandas.DataFrame.dropna() function removes null values ​​(missing values) from a DataFrame by dropping rows or columns that contain null values DataFrame . NaN ( Not a Number ) and NaT ( Not a Time ) represent null values. DataFrame

Pandas DataFrame DataFrame.assign() function

Publish Date:2025/04/30 Views:55 Category:Python

Python Pandas DataFrame.assign() function assigns new columns to DataFrame . pandas.DataFrame.assign() grammar DataFrame . assign( ** kwargs) parameter **kwargs Keyword arguments, DataFrame the column names to be assigned to are passed as k

Pandas DataFrame DataFrame.transform() function

Publish Date:2025/04/30 Views:120 Category:Python

Python Pandas DataFrame.transform() DataFrame applies a function on and transforms DataFrame . The function to be applied is passed as an argument to the function. The axis length of transform() the transformed should be the same as the ori

Scan to Read All Tech Tutorials

Social Media
  • https://www.github.com/onmpw
  • qq:1244347461

Recommended

Tags

Scan the Code
Easier Access Tutorial