Pandas Insert Method in Python
This tutorial explains how to insert()
insert a column in a Pandas DataFrame using the method.
import pandas as pd
countries_df = pd.DataFrame(
{
"Country": ["Nepal", "Switzerland", "Germany", "Canada"],
"Continent": ["Asia", "Europe", "Europe", "North America"],
"Primary Language": ["Nepali", "French", "German", "English"],
}
)
print("Countries DataFrame:")
print(countries_df, "\n")
Output:
Countries DataFrame:
Country Continent Primary Language
0 Nepal Asia Nepali
1 Switzerland Europe French
2 Germany Europe German
3 Canada North America English
We will use the DataFrame shown in the above example countries_df
to explain how to insert()
insert a column in a Pandas DataFrame using the method.
pandas.DataFrame.insert()
method
grammar
DataFrame.insert(loc, column, value, allow_duplicates=False)
It column
inserts a column named DataFrame
into , with the value value
specified by , at loc
position .
Use insert()
the method to insert a column with the same value for all rows
import pandas as pd
countries_df = pd.DataFrame(
{
"Country": ["Nepal", "Switzerland", "Germany", "Canada"],
"Continent": ["Asia", "Europe", "Europe", "North America"],
"Primary Language": ["Nepali", "French", "German", "English"],
}
)
print("Countries DataFrame:")
print(countries_df, "\n")
countries_df.insert(3, "Capital", "Unknown")
print("Countries DataFrame after inserting Capital column:")
print(countries_df)
Output:
Countries DataFrame:
Country Continent Primary Language
0 Nepal Asia Nepali
1 Switzerland Europe French
2 Germany Europe German
3 Canada North America English
Countries DataFrame after inserting Capital column:
Country Continent Primary Language Capital
0 Nepal Asia Nepali Unknown
1 Switzerland Europe French Unknown
2 Germany Europe German Unknown
3 Canada North America English Unknown
It inserts the Capital column at index in countries_df
the DataFrame 3
, with the Capital column value set to for all rows Unknown
.
The position 0
starts at , so 3
the position refers to the column in the DataFrame 4
.
Insert a column into a DataFrame, specifying the value for each row
If we want insert()
to specify the values for the columns to be inserted into each row using the method, we can insert()
pass a list of values as value
the parameter in the method.
import pandas as pd
countries_df = pd.DataFrame(
{
"Country": ["Nepal", "Switzerland", "Germany", "Canada"],
"Continent": ["Asia", "Europe", "Europe", "North America"],
"Primary Language": ["Nepali", "French", "German", "English"],
}
)
print("Countries DataFrame:")
print(countries_df, "\n")
capitals = ["Kathmandu", "Zurich", "Berlin", "Ottawa"]
countries_df.insert(2, "Capital", capitals)
print("Countries DataFrame after inserting Capital column:")
print(countries_df)
Output:
Countries DataFrame:
Country Continent Primary Language
0 Nepal Asia Nepali
1 Switzerland Europe French
2 Germany Europe German
3 Canada North America English
Countries DataFrame after inserting Capital column:
Country Continent Capital Primary Language
0 Nepal Asia Kathmandu Nepali
1 Switzerland Europe Zurich French
2 Germany Europe Berlin German
3 Canada North America Ottawa English
It inserts the column countries_df
at index in the DataFrame and assigns the value of each row to the column in the DataFrame .2
Capital
Capital
Set in insert()
the method allow_duplicates = True
to add an existing column
import pandas as pd
countries_df = pd.DataFrame(
{
"Country": ["Nepal", "Switzerland", "Germany", "Canada"],
"Continent": ["Asia", "Europe", "Europe", "North America"],
"Primary Language": ["Nepali", "French", "German", "English"],
"Capital": ["Kathmandu", "Zurich", "Berlin", "Ottawa"],
}
)
print("Countries DataFrame:")
print(countries_df, "\n")
capitals = ["Kathmandu", "Zurich", "Berlin", "Ottawa"]
countries_df.insert(4, "Capital", capitals, allow_duplicates=True)
print("Countries DataFrame after inserting Capital column:")
print(countries_df)
Output:
Countries DataFrame:
Country Continent Primary Language Capital
0 Nepal Asia Nepali Kathmandu
1 Switzerland Europe French Zurich
2 Germany Europe German Berlin
3 Canada North America English Ottawa
Countries DataFrame after inserting Capital column:
Country Continent Primary Language Capital Capital
0 Nepal Asia Nepali Kathmandu Kathmandu
1 Switzerland Europe French Zurich Zurich
2 Germany Europe German Berlin Berlin
3 Canada North America English Ottawa Ottawa
It Capital
adds the column to countries_df
the DataFrame, even though the column countries_df
already exists in the DataFrame Capital
.
If we try to insert a column that already exists in the DataFrame without insert()
setting it in the method allow_duplicates = True
, it will throw us an error message: ValueError: cannot insert column, already exists.
.
For reprinting, please send an email to 1244347461@qq.com for approval. After obtaining the author's consent, kindly include the source as a link.
Related Articles
Pandas DataFrame DataFrame.query() function
Publish Date:2025/04/30 Views:107 Category:Python
-
The pandas.DataFrame.query() method filters the rows of the caller DataFrame using the given query expression. pandas.DataFrame.query() grammar DataFrame . query(expr, inplace = False , ** kwargs) parameter expr Filter rows based on query e
Pandas DataFrame DataFrame.min() function
Publish Date:2025/04/30 Views:162 Category:Python
-
Python Pandas DataFrame.min() function gets the minimum value of the DataFrame object along the specified axis. pandas.DataFrame.min() grammar DataFrame . mean(axis = None , skipna = None , level = None , numeric_only = None , ** kwargs) pa
Pandas DataFrame DataFrame.mean() function
Publish Date:2025/04/30 Views:85 Category:Python
-
Python Pandas DataFrame.mean() function calculates the mean of the values of the DataFrame object over the specified axis. pandas.DataFrame.mean() grammar DataFrame . mean(axis = None , skipna = None , level = None , numeric_only = No
Pandas DataFrame DataFrame.isin() function
Publish Date:2025/04/30 Views:133 Category:Python
-
The pandas.DataFrame.isin(values) function checks whether each element in the caller DataFrame contains values the value specified in the input . pandas.DataFrame.isin(values) grammar DataFrame . isin(values) parameter values iterable - lis
Pandas DataFrame DataFrame.groupby() function
Publish Date:2025/04/30 Views:161 Category:Python
-
pandas.DataFrame.groupby() takes a DataFrame as input and divides the DataFrame into groups based on a given criterion. We can use groupby() the method to easily process large datasets. pandas.DataFrame.groupby() grammar DataFrame . groupby
Pandas DataFrame DataFrame.fillna() function
Publish Date:2025/04/30 Views:60 Category:Python
-
The pandas.DataFrame.fillna() function replaces the values DataFrame in NaN with a certain value. pandas.DataFrame.fillna() grammar DataFrame . fillna( value = None , method = None , axis = None , inplace = False , limit = None , down
Pandas DataFrame DataFrame.dropna() function
Publish Date:2025/04/30 Views:181 Category:Python
-
The pandas.DataFrame.dropna() function removes null values (missing values) from a DataFrame by dropping rows or columns that contain null values DataFrame . NaN ( Not a Number ) and NaT ( Not a Time ) represent null values. DataFrame
Pandas DataFrame DataFrame.assign() function
Publish Date:2025/04/30 Views:55 Category:Python
-
Python Pandas DataFrame.assign() function assigns new columns to DataFrame . pandas.DataFrame.assign() grammar DataFrame . assign( ** kwargs) parameter **kwargs Keyword arguments, DataFrame the column names to be assigned to are passed as k
Pandas DataFrame DataFrame.transform() function
Publish Date:2025/04/30 Views:120 Category:Python
-
Python Pandas DataFrame.transform() DataFrame applies a function on and transforms DataFrame . The function to be applied is passed as an argument to the function. The axis length of transform() the transformed should be the same as the ori