JIYIK CN >

Current Location:Home > Learning > PROGRAM > Python >

Pandas DataFrame DataFrame.dropna() function

Author:JIYIK Last Updated:2025/04/30 Views:

The pandas.DataFrame.dropna() function removes null values ​​(missing values) from a DataFrame by dropping rows or columns that contain null values DataFrame.

NaN( Not a Number) and NaT( Not a Time) represent null values. DataFrame.dropna()Detect these values ​​and filter accordingly DataFrame.


pandas.DataFrame.dropna()grammar

DataFrame.dropna(axis, how, thresh, subset, inplace)

parameter

axis It determines whether the axis is row or column.
If it is 0 or 'index', then it will remove rows containing missing values.
If it is 1 or 'column', then it will remove columns containing missing values. By default, its value is 0
how This parameter determines how the function deletes rows or columns. It accepts only two strings, either allor all. By default, it is set to any.
any- If there are any empty values ​​in a row or column, it is deleted.
all- If all values ​​in a row or column are missing, the row or column is discarded .
thresh It is an integer that specifies the minimum number of non-missing values ​​to prevent a row or column from being missing.
subset It is an array containing the names of the rows or columns that specify the delete procedure
inplace It is a boolean value which, if set True, will mutate the caller in-place DataFrame. By default, its value isFalse

Return Value

It returns a filtered list DataFramecontaining removed rows or columns based on the passed parameter.


Sample code: DataFrame.dropna()Deleting a row

By default, axis 0 is the rows, so all output has the rows dropped.

import pandas as pd

dataframe=pd.DataFrame({'Attendance': {0: 60, 1: None, 2: 80,3: None, 4: 95},
                    'Name': {0: 'Olivia', 1: 'John', 2: 'Laura',3: 'Ben',4: 'Kevin'},
                    'Obtained Marks': {0: None, 1: 75, 2: 82, 3: 64, 4: None}})
print(dataframe)

An example is shown DataFramebelow.

   Attendance    Name  Obtained Marks
0        60.0  Olivia             NaN
1         NaN    John            75.0
2        80.0   Laura            82.0
3         NaN     Ben            64.0
4        95.0   Kevin             NaN

All the parameters of this function are optional. If we do not pass any parameter, then the function will discard all the rows that contain a null value.

import pandas as pd

dataframe = pd.DataFrame(
    {
        "Attendance": {0: 60, 1: None, 2: 80, 3: None, 4: 95},
        "Name": {0: "Olivia", 1: "John", 2: "Laura", 3: "Ben", 4: "Kevin"},
        "Obtained Marks": {0: None, 1: 75, 2: 82, 3: 64, 4: None},
    }
)
dataframe1 = dataframe.dropna()
print(dataframe1)

Output:

   Attendance   Name  Obtained Marks
2        80.0  Laura            82.0

Discard all rows that contain a missing value.


Sample code: DataFrame.dropna()Deleting a column

import pandas as pd

dataframe = pd.DataFrame(
    {
        "Attendance": {0: 60, 1: None, 2: 80, 3: None, 4: 95},
        "Name": {0: "Olivia", 1: "John", 2: "Laura", 3: "Ben", 4: "Kevin"},
        "Obtained Marks": {0: None, 1: 75, 2: 82, 3: 64, 4: None},
    }
)
dataframe1 = dataframe.dropna(axis=1)

print(dataframe1)

Output:

     Name
0  Olivia
1    John
2   Laura
3     Ben
4   Kevin

Since we DataFrame.dropna()set in the method axis=1, it removes all the columns that contain a missing value.


Sample code DataFrame.dropna():how=all

import pandas as pd

dataframe = pd.DataFrame(
    {
        "Attendance": {0: 60, 1: None, 2: 80, 3: None, 4: 95},
        "Name": {0: "Olivia", 1: "John", 2: "Laura", 3: "Ben", 4: "Kevin"},
        "Obtained Marks": {0: None, 1: 75, 2: 82, 3: 64, 4: None},
    }
)

dataframe1 = dataframe.dropna(axis=1, how="all")
print(dataframe1)

Output:

   Attendance    Name  Obtained Marks
0        60.0  Olivia             NaN
1         NaN    John            75.0
2        80.0   Laura            82.0
3         NaN     Ben            64.0
4        95.0   Kevin             NaN

The rows containing missing values ​​were not removed because howthe value of the parameter was set to all, which means that all values ​​for that row should be null.

If all values ​​are missing along a specified axis, DataFrame.dropna()the method drops that axis, even if howis set to all.

import pandas as pd

dataframe = pd.DataFrame(
    {
        "Attendance": {0: 60, 1: None, 2: 80, 3: None, 4: 95},
        "Name": {0: "Olivia", 1: "John", 2: "Laura", 3: "Ben", 4: "Kevin"},
        "Obtained Marks": {0: None, 1: None, 2: None, 3: None, 4: None},
    }
)

print(dataframe)
print("--------")
dataframe1 = dataframe.dropna(axis=1, how="all")
print(dataframe1)

Output:

   Attendance    Name Obtained Marks
0        60.0  Olivia           None
1         NaN    John           None
2        80.0   Laura           None
3         NaN     Ben           None
4        95.0   Kevin           None   Attendance    Name
0        60.0  Olivia
1         NaN    John
2        80.0   Laura
3         NaN     Ben
4        95.0   Kevin

Example code: DataFrame.dropna()Matching a specified subset or threshold

import pandas as pd

dataframe = pd.DataFrame(
    {
        "Attendance": {0: 60, 1: None, 2: 80, 3: None, 4: 95},
        "Name": {0: "Olivia", 1: "John", 2: "Laura", 3: "Ben", 4: "Kevin"},
        "Obtained Marks": {0: None, 1: 75, 2: 82, 3: 64, 4: None},
    }
)

dataframe1 = dataframe.dropna(thresh=3)
print(dataframe1)

Output:

   Attendance   Name  Obtained Marks
2        80.0  Laura            82.0

threshThe value of is 3, which means that in order to prevent falling, at least 3 non-null values ​​are required.

We can also specify subset.

import pandas as pd

dataframe = pd.DataFrame(
    {
        "Attendance": {0: 60, 1: None, 2: 80, 3: None, 4: 95},
        "Name": {0: "Olivia", 1: "John", 2: "Laura", 3: "Ben", 4: "Kevin"},
        "Obtained Marks": {0: None, 1: 75, 2: 82, 3: 64, 4: None},
    }
)

dataframe1 = dataframe.dropna(subset=["Attendance", "Name"])
print(dataframe1)

Output:

   Attendance    Name  Obtained Marks
0        60.0  Olivia             NaN
2        80.0   Laura            82.0
4        95.0   Kevin             NaN

Based on Attendancethe and Namecolumns, it removes rows with missing values. It will not remove records if only values ​​in other columns, such as Obtained Marksthe column here, have missing values.


Sample code DataFrame.dropna():inplace=True

DataFrame.dropna()If inplaceis set to True, the caller DataFramechanges in-place.

import pandas as pd

dataframe = pd.DataFrame(
    {
        "Attendance": {0: 60, 1: None, 2: 80, 3: None, 4: 95},
        "Name": {0: "Olivia", 1: "John", 2: "Laura", 3: "Ben", 4: "Kevin"},
        "Obtained Marks": {0: None, 1: 75, 2: 82, 3: 64, 4: None},
    }
)
dataframe1 = dataframe.dropna(inplace=True)
print(dataframe1)

Output:

None

DataFrameThe parameter is modified in-place by the caller and returned None.

For reprinting, please send an email to 1244347461@qq.com for approval. After obtaining the author's consent, kindly include the source as a link.

Article URL:

Related Articles

Pandas DataFrame DataFrame.query() function

Publish Date:2025/04/30 Views:107 Category:Python

The pandas.DataFrame.query() method filters the rows of the caller DataFrame using the given query expression. pandas.DataFrame.query() grammar DataFrame . query(expr, inplace = False , ** kwargs) parameter expr Filter rows based on query e

Pandas DataFrame DataFrame.min() function

Publish Date:2025/04/30 Views:162 Category:Python

Python Pandas DataFrame.min() function gets the minimum value of the DataFrame object along the specified axis. pandas.DataFrame.min() grammar DataFrame . mean(axis = None , skipna = None , level = None , numeric_only = None , ** kwargs) pa

Pandas DataFrame DataFrame.mean() function

Publish Date:2025/04/30 Views:85 Category:Python

Python Pandas DataFrame.mean() function calculates the mean of the values ​​of the DataFrame object over the specified axis. pandas.DataFrame.mean() grammar DataFrame . mean(axis = None , skipna = None , level = None , numeric_only = No

Pandas DataFrame DataFrame.isin() function

Publish Date:2025/04/30 Views:133 Category:Python

The pandas.DataFrame.isin(values) function checks whether each element in the caller DataFrame contains values the value specified in the input . pandas.DataFrame.isin(values) grammar DataFrame . isin(values) parameter values iterable - lis

Pandas DataFrame DataFrame.groupby() function

Publish Date:2025/04/30 Views:161 Category:Python

pandas.DataFrame.groupby() takes a DataFrame as input and divides the DataFrame into groups based on a given criterion. We can use groupby() the method to easily process large datasets. pandas.DataFrame.groupby() grammar DataFrame . groupby

Pandas DataFrame DataFrame.fillna() function

Publish Date:2025/04/30 Views:60 Category:Python

The pandas.DataFrame.fillna() function replaces the values DataFrame ​​in NaN with a certain value. pandas.DataFrame.fillna() grammar DataFrame . fillna( value = None , method = None , axis = None , inplace = False , limit = None , down

How to Apply a Function to a Column in a Pandas Dataframe

Publish Date:2025/04/30 Views:50 Category:Python

In Pandas, you can transform and manipulate columns and DataFrames using methods apply() such as transform() and . The desired transformation is passed to these methods as a function argument. Each method has its own subtle differences and

Finding the installed version of Pandas

Publish Date:2025/04/12 Views:190 Category:Python

Pandas is one of the commonly used Python libraries for data analysis, and Pandas versions need to be updated regularly. Therefore, other Pandas requirements are incompatible. Let's look at ways to determine the Pandas version and dependenc

KeyError in Pandas

Publish Date:2025/04/12 Views:81 Category:Python

This tutorial explores the concept of KeyError in Pandas. What is Pandas KeyError? While working with Pandas, analysts may encounter multiple errors thrown by the code interpreter. These errors are wide ranging and can help us better invest

Scan to Read All Tech Tutorials

Social Media
  • https://www.github.com/onmpw
  • qq:1244347461

Recommended

Tags

Scan the Code
Easier Access Tutorial