How to Sort a Pandas DataFrame by the Values of a Column
We'll introduce pandas.DataFrame.sort_values
the method to DataFrame
sort values, as well as ascending
options like to specify the sort order, and na_position
to determine the positioning of NaNs in the sorted results.
Refer to the following DataFrame
,
import pandas as pd
df = pd.DataFrame(
{
"col1": ["g", "t", "n", "w", "n", "g"],
"col2": [5, 2, 5, 1, 3, 6],
"col3": [0, 7, 2, 8, 1, 2],
}
)
print(df)
If you run this code, you will get the following unsorted output.
col1 col2 col3
0 g 5 0
1 t 2 7
2 n 5 2
3 w 1 8
4 n 3 1
5 g 6 2
DataFrame
Now we can sort
using the following code .
import pandas as pd
df = pd.DataFrame(
{
"col1": ["g", "t", "n", "w", "n", "g"],
"col2": [5, 2, 5, 1, 3, 6],
"col3": [0, 7, 2, 8, 1, 2],
}
)
print(df.sort_values(by=["col1"]))
We have sorted col1
by DataFrame
. After running the above code, you will get the following output.
col1 col2 col3
0 g 5 0
5 g 6 2
2 n 5 2
4 n 3 1
1 t 2 7
3 w 1 8
We can also sort using multiple columns, let us change the last line of the above code as follows,
print(df.sort_values(by=["col1", "col2"]))
After running the code, we will get the following output.
col1 col2 col3
0 g 5 0
5 g 6 2
4 n 3 1
2 n 5 2
1 t 2 7
3 w 1 8
Now, further sort DataFrame
by as well .col2
DataFrame
Sorting order - parameter Ascending
By default the sorting is in ascending order, to change it in descending order DataFrame
we need to set the flag ascending=False
.
print(df.sort_values(by=["col1", "col2"], ascending=False))
After running the code, we will get the following output.
col1 col2 col3
3 w 1 8
1 t 2 7
2 n 5 2
4 n 3 1
5 g 6 2
0 g 5 0
DataFrame
Sort Order - Parametersna_position
na_position
The position specified after sorting NaN
. last
Puts NaN
at the end of the sort. Its default value is first
to NaN
put at the beginning of the sorted result.
Refer to the following DataFrame
,
import numpy as np
import pandas as pd
s = pd.Series([np.nan, 2, 4, 10, 7])
print(s.sort_values(na_position="last"))
After running the code, we will get the following output.
1 2.0
2 4.0
4 7.0
3 10.0
0 NaN
For reprinting, please send an email to 1244347461@qq.com for approval. After obtaining the author's consent, kindly include the source as a link.
Related Articles
How to Convert DataFrame Column to String in Pandas
Publish Date:2025/05/02 Views:161 Category:Python
-
We will look at methods for converting Pandas DataFrame columns to strings. Pandas Series.astype(str) Method DataFrame.apply() Methods operate on the elements in a column We will use the same DataFrame below in this article. import pandas a
How to count the frequency of values in a Pandas DataFrame
Publish Date:2025/05/02 Views:84 Category:Python
-
Sometimes, when you use DataFrame , you may want to count the number of times a value occurs in a column, or in other words, calculate the frequency. There are mainly three methods used for this. Let's look at them one by one. df.groupby().
How to get value from Pandas DataFrame cell
Publish Date:2025/05/02 Views:147 Category:Python
-
We'll look at using to get values from cells in iloc Pandas , which is great for selecting by position, and how it differs from . We'll also learn about the and methods, which we can use when we don't want to set the return type to .
How to Add a Row to a Pandas DataFrame
Publish Date:2025/05/02 Views:127 Category:Python
-
Pandas is designed to load a fully populated DataFrame . We can pandas.DataFrame add them one by one in . This can be done by using various methods, such as .loc , dictionary, pandas.concat() or DataFrame.append() . .loc [index] Add rows to
How to change the order of Panas DataFrame columns
Publish Date:2025/05/02 Views:184 Category:Python
-
We will show how to use insert and reindex to change the order of columns in different ways pandas.DataFrame , such as assigning column names in a desired order. pandas.DataFrame Sort the columns in the new order The easiest way is columns
How to pretty print an entire Pandas Series/DataFrame
Publish Date:2025/05/02 Views:167 Category:Python
-
We will introduce various methods to pretty print the entire Pandas Series/DataFrame, such as option_context, set_option, and options.display. option_context Pretty Printing Pandas DataFrame We can option_context use with one or more option
How to count the number of NaN occurrences in a Pandas Dataframe column
Publish Date:2025/05/02 Views:144 Category:Python
-
We will look at methods for counting the number of NaN occurrences in a column of a Pandas DataFrame. We have a number of options, including isna() the method for one or more columns, by NaN subtracting the total length from the number of o
How to Convert a Pandas Dataframe to a NumPy Array
Publish Date:2025/05/02 Views:151 Category:Python
-
We will introduce to_numpy() the method to pandas.Dataframe convert a to NumPy an array, which is introduced in pandas v0.24.0, replacing the old .values method. We can define it on Index , Series , and DataFrame objects to_numpy . The old
How to add a header row to a Pandas DataFrame
Publish Date:2025/05/02 Views:161 Category:Python
-
We will look at methods for adding a header row to a pandas dataframe, as well as the option to pass in the names directly in the dataframe or by assigning the column names in a list directly to dataframe.columns the method. We will also in