How to pretty print an entire Pandas Series/DataFrame
We will introduce various methods to pretty print the entire Pandas Series/DataFrame, such as option_context, set_option, and options.display.
option_context
Pretty Printing Pandas DataFrame
We can option_context
use with one or more options:
# python 3.x
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(5, 10))
with pd.option_context(
"display.max_rows", None, "display.max_columns", None
): # more options can be specified also
print(df)
Output:
0 1 2 3 4 5 6 \
0 0.536629 -0.317664 1.109011 -0.690963 0.895591 -2.008769 -0.323554
1 1.978043 1.179393 -0.923501 -1.086199 1.311835 0.281665 0.132701
2 -0.119101 0.339344 0.445792 0.544024 -0.780646 -0.505816 0.709910
3 -0.092554 -1.547887 0.895174 0.998706 -0.480896 -0.969276 -0.050267
4 -0.433900 -0.242806 2.435337 -0.299294 -1.011233 0.556583 -1.466501
7 8 9
0 -2.454773 1.477553 -1.274452
1 0.524635 -0.707736 -0.283512
2 1.381855 1.676523 -0.206820
3 -2.183197 -0.061560 -0.295834
4 0.168427 -0.278612 -0.812824
set_option()
Can be displayed without being truncated
To display DataFrame
the full content of , we need to set the following 4 options:
# python 3.x
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(5, 10))
pd.set_option("display.max_rows", None)
pd.set_option("display.max_columns", None)
pd.set_option("display.width", None)
pd.set_option("display.max_colwidth", -1)
print(df)
Output:
0 1 2 3 4 5 6 7 8 9
0 -0.137170 0.491314 0.213574 0.794829 0.244942 -0.472234 0.090120 -0.349087 1.496215 -0.674469
1 1.575921 -0.447399 -1.254165 1.865231 -0.112770 0.535931 -1.092489 0.032282 -0.501178 -0.521661
2 1.390534 0.147977 -0.908857 0.876250 -0.260842 0.873867 1.199424 -1.058784 0.278643 1.623892
3 -0.277710 -0.137027 -0.347331 -0.133104 0.495571 0.770674 0.819736 -0.130426 0.556820 -0.599270
4 0.146928 0.726470 -0.831788 -0.922454 -0.835223 0.494688 0.182850 -0.916735 0.678326 -0.953774
Used to display DataFrame
largeoptions.display
As display.context
an alternative to , we set the option like this to display large DataFrame
:
# python 3.x
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(5, 10))
def set_pandas_display_options() -> None:
display = pd.options.display
display.max_columns = 100
display.max_rows = 100
display.max_colwidth = 199
display.width = None
set_pandas_display_options()
print(df)
Output:
0 1 2 3 4 5 6 7 8 9
0 -1.915164 -1.953066 0.279874 -1.841046 0.105823 -2.070710 -0.075651 -0.110299 0.892385 -1.270936
1 0.135022 -0.088581 -0.257854 0.167365 1.593467 -0.131887 0.780474 -0.394496 -1.942498 0.192672
2 -0.276460 0.225853 -0.896788 -0.639678 1.867691 -1.457160 -0.902934 -0.546596 0.928684 -0.041108
3 0.851837 0.526239 1.187710 0.139416 0.546204 0.409457 0.542819 -1.174244 -3.118918 0.086719
4 0.402529 -0.724139 -0.294063 -0.725560 1.159756 0.493684 0.277930 0.384105 -0.475742 0.675826
For reprinting, please send an email to 1244347461@qq.com for approval. After obtaining the author's consent, kindly include the source as a link.
Related Articles
How to Convert DataFrame Column to String in Pandas
Publish Date:2025/05/02 Views:161 Category:Python
-
We will look at methods for converting Pandas DataFrame columns to strings. Pandas Series.astype(str) Method DataFrame.apply() Methods operate on the elements in a column We will use the same DataFrame below in this article. import pandas a
How to count the frequency of values in a Pandas DataFrame
Publish Date:2025/05/02 Views:84 Category:Python
-
Sometimes, when you use DataFrame , you may want to count the number of times a value occurs in a column, or in other words, calculate the frequency. There are mainly three methods used for this. Let's look at them one by one. df.groupby().
How to get value from Pandas DataFrame cell
Publish Date:2025/05/02 Views:147 Category:Python
-
We'll look at using to get values from cells in iloc Pandas , which is great for selecting by position, and how it differs from . We'll also learn about the and methods, which we can use when we don't want to set the return type to .
How to Add a Row to a Pandas DataFrame
Publish Date:2025/05/02 Views:127 Category:Python
-
Pandas is designed to load a fully populated DataFrame . We can pandas.DataFrame add them one by one in . This can be done by using various methods, such as .loc , dictionary, pandas.concat() or DataFrame.append() . .loc [index] Add rows to
How to change the order of Panas DataFrame columns
Publish Date:2025/05/02 Views:184 Category:Python
-
We will show how to use insert and reindex to change the order of columns in different ways pandas.DataFrame , such as assigning column names in a desired order. pandas.DataFrame Sort the columns in the new order The easiest way is columns
How to set values for specific cells in a Pandas DataFrame using index
Publish Date:2025/05/02 Views:118 Category:Python
-
Pandas is a data-centric python package that makes data analysis in python easy and consistent. In this article, we will look at different ways to access and set specific cell values in a pandas DataFrame data structure using indexing
Convert Pandas to CSV without index
Publish Date:2025/05/01 Views:159 Category:Python
-
As you know, an index can be thought of as a reference point used to store and access records in a DataFrame. They are unique for each row and usually range from 0 to the last row of the DataFrame, but we can also have serial numbers, dates
Convert Pandas DataFrame to Dictionary
Publish Date:2025/05/01 Views:198 Category:Python
-
This tutorial will show you how to convert a Pandas DataFrame into a dictionary with the index column elements as keys and the corresponding elements of other columns as values. We will use the following DataFrame in the article. import pan
Convert Pandas DataFrame columns to lists
Publish Date:2025/05/01 Views:192 Category:Python
-
When working with Pandas DataFrames in Python, you often need to convert the columns of the DataFrame into Python lists. This process is very important for various data manipulation and analysis tasks. Fortunately, Pandas provides several m