Pandas DataFrame DataFrame.to_csv() function
Python Pandas DataFrame.to_csv() function DataFrame
saves the values contained in the rows and columns of a to a CSV file. We can also DataFrame
convert to a CSV string.
pandas.DataFrame.to_csv()
grammar
DataFrame.to_csv(
path_or_buf=None,
sep=",",
na_rep="",
float_format=None,
columns=None,
header=True,
index=True,
index_label=None,
mode="w",
encoding=None,
compression="infer",
quoting=None,
quotechar='""',
line_terminator=None,
chunksize=None,
date_format=None,
doublequote=True,
escapechar=None,
decimal=".",
)
parameter
This function has several parameters. The default values for all the parameters are mentioned above.
path_or_buf |
It is a string or a file handle. It represents the name of a file or a file object. If its value is None, then it DataFrame will be converted to a CSV "string". |
sep |
It is a Series string that represents the delimiter used in the CSV file. |
na_rep |
It is a string. It represents the missing data. |
float_format |
It is a string. It represents the format of the floating point number. |
columns |
It is a Series . It represents the columns that will be saved in the CSV file DataFrame . |
header |
It is a boolean value or a list of strings. If its value is set to False , then the column names will not be saved in the CSV file. If a list of strings is passed, then those strings will be saved as column names. |
index |
It is a boolean value, if its value is True , then the row names i.e. index will be saved. If its value is True , then the row names i.e. index will be saved. |
index_label |
It is a string or Series . It represents the column name of a specific index. |
mode |
It is a string. It represents the mode of the process. Since we are DataFrame writing to a CSV file, its value is the Python write mode w . |
encoding |
It is a string. It represents the encoding scheme to be used in the CSV file. The default encoding scheme is utf-8 . The default encoding scheme is utf-8 . |
compression |
It is a string or a dictionary. If it is a string, it represents the compression mode. If it is a dictionary, then method the value corresponding to the key represents the compression mode. It has several compression modes. You can check it here . |
quoting |
It represents a constant of the CSV module |
quotechar |
It is a string, of length 1. It has a length of 1 and represents the character used to quote the field. |
line_terminator |
It is a string that represents the characters for new lines in the CSV file. |
chunksize |
It is an integer. It represents the number of rows to be written to the CSV file each time. |
date_format |
It is a string. It represents DateTime the format of the object. |
doublequote |
It is a Boolean value. It controls quotechar the reference of . |
escapechar |
It is a string of length 1. Its length is 1 and represents the characters used for escaping sep and quotechar . |
decimal |
It is a string. It represents the character of the decimal point. |
Return Value
It returns None
either or a string. If path_or_buf
is None
then it DataFrame
converts to a string and returns the string. Otherwise, it returns None
.
Sample code:DataFrame.to_csv()
In the next few code snippets, we will implement this function in different ways.
import pandas as pd
dataframe=pd.DataFrame({
'Attendance':
{0: 60,
1: 100,
2: 80,
3: 78,
4: 95},
'Name':
{0: 'Olivia',
1: 'John',
2: 'Laura',
3: 'Ben',
4: 'Kevin'},
'Obtained Marks':
{0: 90,
1: 75,
2: 82,
3: 64,
4: 45}
})
print(dataframe)
Examples DataFrame
are:
Attendance Name Obtained Marks
0 60 Olivia 90
1 100 John 75
2 80 Laura 82
3 78 Ben 64
4 95 Kevin 45
All the parameters of this function are optional. If we do not pass any parameters while executing this function, then it will produce the following output.
import pandas as pd
dataframe = pd.DataFrame(
{
"Attendance": {0: 60, 1: 100, 2: 80, 3: 78, 4: 95},
"Name": {0: "Olivia", 1: "John", 2: "Laura", 3: "Ben", 4: "Kevin"},
"Obtained Marks": {0: 90, 1: 75, 2: 82, 3: 64, 4: 45},
}
)
csvstring = dataframe.to_csv()
print(csvstring)
Output:
,Attendance,Name,Obtained Marks
0,60,Olivia,90
1,100,John,75
2,80,Laura,82
3,78,Ben,64
4,95,Kevin,45
The function generated the output using all the default values. It returned a CSV string. Now we will save the data in a CSV file.
import pandas as pd
dataframe = pd.DataFrame(
{
"Attendance": {0: 60, 1: 100, 2: 80, 3: 78, 4: 95},
"Name": {0: "Olivia", 1: "John", 2: "Laura", 3: "Ben", 4: "Kevin"},
"Obtained Marks": {0: 90, 1: 75, 2: 82, 3: 64, 4: 45},
}
)
returnValue = dataframe.to_csv("myfile.csv")
print(returnValue)
Output:
None
The function creates a new CSV file in the directory where the program is saved.
Sample code: DataFrame.to_csv()
Specifying delimiters for CSV data
import pandas as pd
dataframe = pd.DataFrame(
{
"Attendance": {0: 60, 1: 100, 2: 80, 3: 78, 4: 95},
"Name": {0: "Olivia", 1: "John", 2: "Laura", 3: "Ben", 4: "Kevin"},
"Obtained Marks": {0: 90, 1: 75, 2: 82, 3: 64, 4: 45},
}
)
returnValue = dataframe.to_csv(sep="@")
print(returnValue)
Output:
@Attendance@Name@Obtained Marks
0@60@Olivia@90
1@100@John@75
2@80@Laura@82
3@78@Ben@64
4@95@Kevin@45
Sample code: DataFrame.to_csv()
Select a few columns and rename the columns
import pandas as pd
dataframe = pd.DataFrame(
{
"Attendance": {0: 60, 1: 100, 2: 80, 3: 78, 4: 95},
"Name": {0: "Olivia", 1: "John", 2: "Laura", 3: "Ben", 4: "Kevin"},
"Obtained Marks": {0: 90, 1: 75, 2: 82, 3: 64, 4: 45},
}
)
returnValue = dataframe.to_csv(
"myfile.csv", columns=["Name", "Obtained Marks"], header=["Full Name", "Marks"]
)
print(returnValue)
Output:
None
Just like the code above, we can use different parameters to customize our CSV file. This function provides several parameters to use.
For reprinting, please send an email to 1244347461@qq.com for approval. After obtaining the author's consent, kindly include the source as a link.
Related Articles
Pandas DataFrame DataFrame.query() function
Publish Date:2025/04/30 Views:107 Category:Python
-
The pandas.DataFrame.query() method filters the rows of the caller DataFrame using the given query expression. pandas.DataFrame.query() grammar DataFrame . query(expr, inplace = False , ** kwargs) parameter expr Filter rows based on query e
Pandas DataFrame DataFrame.min() function
Publish Date:2025/04/30 Views:162 Category:Python
-
Python Pandas DataFrame.min() function gets the minimum value of the DataFrame object along the specified axis. pandas.DataFrame.min() grammar DataFrame . mean(axis = None , skipna = None , level = None , numeric_only = None , ** kwargs) pa
Pandas DataFrame DataFrame.mean() function
Publish Date:2025/04/30 Views:85 Category:Python
-
Python Pandas DataFrame.mean() function calculates the mean of the values of the DataFrame object over the specified axis. pandas.DataFrame.mean() grammar DataFrame . mean(axis = None , skipna = None , level = None , numeric_only = No
Pandas DataFrame DataFrame.isin() function
Publish Date:2025/04/30 Views:133 Category:Python
-
The pandas.DataFrame.isin(values) function checks whether each element in the caller DataFrame contains values the value specified in the input . pandas.DataFrame.isin(values) grammar DataFrame . isin(values) parameter values iterable - lis
Pandas DataFrame DataFrame.groupby() function
Publish Date:2025/04/30 Views:161 Category:Python
-
pandas.DataFrame.groupby() takes a DataFrame as input and divides the DataFrame into groups based on a given criterion. We can use groupby() the method to easily process large datasets. pandas.DataFrame.groupby() grammar DataFrame . groupby
Pandas DataFrame DataFrame.fillna() function
Publish Date:2025/04/30 Views:60 Category:Python
-
The pandas.DataFrame.fillna() function replaces the values DataFrame in NaN with a certain value. pandas.DataFrame.fillna() grammar DataFrame . fillna( value = None , method = None , axis = None , inplace = False , limit = None , down
Pandas DataFrame DataFrame.dropna() function
Publish Date:2025/04/30 Views:181 Category:Python
-
The pandas.DataFrame.dropna() function removes null values (missing values) from a DataFrame by dropping rows or columns that contain null values DataFrame . NaN ( Not a Number ) and NaT ( Not a Time ) represent null values. DataFrame
Pandas DataFrame DataFrame.assign() function
Publish Date:2025/04/30 Views:55 Category:Python
-
Python Pandas DataFrame.assign() function assigns new columns to DataFrame . pandas.DataFrame.assign() grammar DataFrame . assign( ** kwargs) parameter **kwargs Keyword arguments, DataFrame the column names to be assigned to are passed as k
Pandas DataFrame DataFrame.transform() function
Publish Date:2025/04/30 Views:120 Category:Python
-
Python Pandas DataFrame.transform() DataFrame applies a function on and transforms DataFrame . The function to be applied is passed as an argument to the function. The axis length of transform() the transformed should be the same as the ori