Pandas DataFrame DataFrame.replace() function
pandas.DataFrame.replace() replaces values in a DataFrame with other values, which can be strings, regular expressions, lists, dictionaries, Series
or numbers.
pandas.DataFrame.replace()
grammar
DataFrame.replace(,
to_replace=None,
value=None,
inplace=False,
limit=None,
regex=False,
method='pad')
parameter
to_replace |
string, regular expression, list, dict, Series, number or None . The values in the DataFrame to be replaced. |
value |
Scalar, dict, list, string, regular expression, or None . Replace any to_replace value that matches . |
inplace |
Boolean value. If true, True modifies the caller'sDataFrame |
limit |
Integer. Maximum gap size to fill forward or backward |
regex |
Boolean. If to_replace and/or value is a regular expression, then regex set to True . |
method |
Method for replacement |
Return Value
It returns a that replaces all specified fields DataFrame
with the given .value
Example Code: pandas.DataFrame.replace()
Replace values in a DataFrame using
import pandas as pd
df = pd.DataFrame({'X': [1, 2, 3,],
'Y': [4, 1, 8]})
print("Before Replacement")
print(df)
replaced_df=df.replace(1, 5)
print("After Replacement")
print(replaced_df)
Output:
Before Replacement
X Y
0 1 4
1 2 1
2 3 8
After Replacement
X Y
0 5 4
1 2 5
2 3 8
Here, 1
represents to_replace
the parameter and 5
represents the parameter replace()
in the method value
. Therefore, in df
, all 1
elements with value of are 5
replaced by .
pandas.DataFrame.replace()
Example Code: Replace Multiple Values in a DataFrame Using
Using List Replacement
import pandas as pd
df = pd.DataFrame({'X': [1, 2, 3,],
'Y': [4, 1, 8]})
print("Before Replacement")
print(df)
replaced_df=df.replace([1,2,3],[1,4,9])
print("After Replacement")
print(replaced_df)
Output:
Before Replacement
X Y
0 1 4
1 2 1
2 3 8
After Replacement
X Y
0 1 4
1 4 1
2 9 8
Here, [1,2,3]
represents to_replace
the parameter and [1,4,9]
represents the parameter replace()
in the method value
. Therefore, in df
, the column [1,2,3]
is [1,4,9]
replaced by .
Use dictionary replacement
import pandas as pd
df = pd.DataFrame({'X': [1, 2, 3,],
'Y': [3, 1, 8]})
print("Before Replacement")
print(df)
replaced_df=df.replace({1:10,3:30})
print("After Replacement")
print(replaced_df)
Output:
Before Replacement
X Y
0 1 3
1 2 1
2 3 8
After Replacement
X Y
0 10 30
1 2 10
2 30 8
1
It replaces all elements whose value is with , and replaces 10
all elements whose value is with .3
30
Use Regex
Replace
import pandas as pd
df = pd.DataFrame({'X': ["zeppy", "amid", "amily"],
'Y': ["xar", "abc", "among"]})
print("Before Replacement")
print(df)
df.replace(to_replace=r'^ami.$', value='song', regex=True,inplace=True)
print("After Replacement")
print(df)
Output:
Before Replacement
X Y
0 zeppy xar
1 amid abc
2 amily among
After Replacement
X Y
0 zeppy xar
1 song abc
2 amily among
It replaces all elements whose first three characters are ami
followed by any character with song
. Here only amid
satisfies the given regular expression, so only is replaced amid
by song
. Although amily
the first three characters of are ami
, ami
there are two characters after . Therefore, amily
does not satisfy the given regex, so it remains the same and is not replaced. If you are using regular expressions, make sure regex
that is set to True
, and modify the original after inplace=True
calling the method .replace()
DataFrame
For reprinting, please send an email to 1244347461@qq.com for approval. After obtaining the author's consent, kindly include the source as a link.
Related Articles
Pandas DataFrame DataFrame.query() function
Publish Date:2025/04/30 Views:107 Category:Python
-
The pandas.DataFrame.query() method filters the rows of the caller DataFrame using the given query expression. pandas.DataFrame.query() grammar DataFrame . query(expr, inplace = False , ** kwargs) parameter expr Filter rows based on query e
Pandas DataFrame DataFrame.min() function
Publish Date:2025/04/30 Views:162 Category:Python
-
Python Pandas DataFrame.min() function gets the minimum value of the DataFrame object along the specified axis. pandas.DataFrame.min() grammar DataFrame . mean(axis = None , skipna = None , level = None , numeric_only = None , ** kwargs) pa
Pandas DataFrame DataFrame.mean() function
Publish Date:2025/04/30 Views:85 Category:Python
-
Python Pandas DataFrame.mean() function calculates the mean of the values of the DataFrame object over the specified axis. pandas.DataFrame.mean() grammar DataFrame . mean(axis = None , skipna = None , level = None , numeric_only = No
Pandas DataFrame DataFrame.isin() function
Publish Date:2025/04/30 Views:133 Category:Python
-
The pandas.DataFrame.isin(values) function checks whether each element in the caller DataFrame contains values the value specified in the input . pandas.DataFrame.isin(values) grammar DataFrame . isin(values) parameter values iterable - lis
Pandas DataFrame DataFrame.groupby() function
Publish Date:2025/04/30 Views:161 Category:Python
-
pandas.DataFrame.groupby() takes a DataFrame as input and divides the DataFrame into groups based on a given criterion. We can use groupby() the method to easily process large datasets. pandas.DataFrame.groupby() grammar DataFrame . groupby
Pandas DataFrame DataFrame.fillna() function
Publish Date:2025/04/30 Views:60 Category:Python
-
The pandas.DataFrame.fillna() function replaces the values DataFrame in NaN with a certain value. pandas.DataFrame.fillna() grammar DataFrame . fillna( value = None , method = None , axis = None , inplace = False , limit = None , down
Pandas DataFrame DataFrame.dropna() function
Publish Date:2025/04/30 Views:181 Category:Python
-
The pandas.DataFrame.dropna() function removes null values (missing values) from a DataFrame by dropping rows or columns that contain null values DataFrame . NaN ( Not a Number ) and NaT ( Not a Time ) represent null values. DataFrame
Pandas DataFrame DataFrame.assign() function
Publish Date:2025/04/30 Views:55 Category:Python
-
Python Pandas DataFrame.assign() function assigns new columns to DataFrame . pandas.DataFrame.assign() grammar DataFrame . assign( ** kwargs) parameter **kwargs Keyword arguments, DataFrame the column names to be assigned to are passed as k
Pandas DataFrame DataFrame.transform() function
Publish Date:2025/04/30 Views:120 Category:Python
-
Python Pandas DataFrame.transform() DataFrame applies a function on and transforms DataFrame . The function to be applied is passed as an argument to the function. The axis length of transform() the transformed should be the same as the ori