JIYIK CN >

Current Location:Home > Learning > PROGRAM > Python >

Pandas DataFrame DataFrame.plot.hist() function

Author:JIYIK Last Updated:2025/04/30 Views:

Python Pandas DataFrame.plot.hist() function plots a DataFramesingle histogram of a column. A histogram represents data in a graphical form. It can create a bar chart of a range. The higher the bar, the more data falls within the range of this bar.


pandas.DataFrame.plot.hist()grammar

DataFrame.sample(by=None, bins=10, **kwargs)

parameter

by It is a string or a sequence. It represents DataFramethe columns in to be grouped.
bins It is an integer. It represents the number of bins. A bin is like a range, for example, 0-5, 6-10, etc.
**kwargs These are additional keyword arguments for customizing the histogram. You can see more information here .

Return Value

It returns a plotted histogram and AxesSubplotthe data.


Sample code:DataFrame.plot.hist()

DataFrameLet's start by plotting a histogram using a simple .

import pandas as pd
dataframe = pd.DataFrame({'Value':[100, 200, 300]})
print(dataframe)

Ours DataFramelooks like,

 Value
0  100
1  200
2  300

All the parameters of this function are optional. If we do not pass any parameters while executing this function, then it will produce the following output.

import pandas as pd
from matplotlib import pyplot as plt

dataframe = pd.DataFrame({"Value": [100, 200, 300]})

histogram = dataframe.plot.hist()
print(histogram)
plt.show()

Output:

AxesSubplot(0.125,0.125;0.775x0.755)


Example code: DataFrame.plot.hist()Plotting a complex histogram

Now, we're going to convert our DataFrameto a complex case.

import pandas as pd
import numpy as np

dataframe = pd.DataFrame(np.random.randint(0, 200, size=(200, 3)), columns=list("ABC"))

print(dataframe)

Our DataFramebecomes:

 A    B    C
0     15  163  163
1     29    7   54
2    195   40    6
3    183   92   57
4     72  167   40
..   ...  ...  ...
195   79   35    7
196  122   79  142
197  121   46  124
198  138  141  114
199  148   95  129

[200 rows x 3 columns]

We have created a containing random integers using the NumPy.random.randint() function DataFrame. Now, we will DataFrame.plot.hist()plot DataFramea histogram of this using the function.

import pandas as pd
import numpy as np

from matplotlib import pyplot as plt

dataframe = pd.DataFrame(np.random.randint(0, 200, size=(200, 3)), columns=list("ABC"))

histogram = dataframe.plot.hist()
print(histogram)
plt.show()

Output:

AxesSubplot(0.125,0.125;0.775x0.755)

This function draws a histogram, with 10 by default bin. It shows DataFramethe frequency distribution of the three columns in . Each column is represented by a specific color.


Example code: DataFrame.plot.hist()Changing binthe quantity

import pandas as pd
import numpy as np
from matplotlib import pyplot as plt

dataframe = pd.DataFrame(np.random.randint(0, 200, size=(200, 3)), columns=list("ABC"))

histogram = dataframe.plot.hist(bins=2)
print(histogram)
plt.show()

Output:

AxesSubplot(0.125,0.125;0.775x0.755)

import pandas as pd
import numpy as np
from matplotlib import pyplot as plt

dataframe = pd.DataFrame(np.random.randint(0, 200, size=(200, 3)), columns=list("ABC"))

histogram = dataframe.plot.hist(bins=50)
print(histogram)
plt.show()

Output:

AxesSubplot(0.125,0.125;0.775x0.755)

In the first example code, we binschanged the number to 2, and in the second example code, it was 50. Notice that binsthe more numbers there are, the easier it is to understand the histogram. The first histogram is blurry because we can't see Athe bars.

For reprinting, please send an email to 1244347461@qq.com for approval. After obtaining the author's consent, kindly include the source as a link.

Article URL:

Related Articles

Pandas DataFrame DataFrame.query() function

Publish Date:2025/04/30 Views:107 Category:Python

The pandas.DataFrame.query() method filters the rows of the caller DataFrame using the given query expression. pandas.DataFrame.query() grammar DataFrame . query(expr, inplace = False , ** kwargs) parameter expr Filter rows based on query e

Pandas DataFrame DataFrame.min() function

Publish Date:2025/04/30 Views:162 Category:Python

Python Pandas DataFrame.min() function gets the minimum value of the DataFrame object along the specified axis. pandas.DataFrame.min() grammar DataFrame . mean(axis = None , skipna = None , level = None , numeric_only = None , ** kwargs) pa

Pandas DataFrame DataFrame.mean() function

Publish Date:2025/04/30 Views:85 Category:Python

Python Pandas DataFrame.mean() function calculates the mean of the values ​​of the DataFrame object over the specified axis. pandas.DataFrame.mean() grammar DataFrame . mean(axis = None , skipna = None , level = None , numeric_only = No

Pandas DataFrame DataFrame.isin() function

Publish Date:2025/04/30 Views:133 Category:Python

The pandas.DataFrame.isin(values) function checks whether each element in the caller DataFrame contains values the value specified in the input . pandas.DataFrame.isin(values) grammar DataFrame . isin(values) parameter values iterable - lis

Pandas DataFrame DataFrame.groupby() function

Publish Date:2025/04/30 Views:161 Category:Python

pandas.DataFrame.groupby() takes a DataFrame as input and divides the DataFrame into groups based on a given criterion. We can use groupby() the method to easily process large datasets. pandas.DataFrame.groupby() grammar DataFrame . groupby

Pandas DataFrame DataFrame.fillna() function

Publish Date:2025/04/30 Views:60 Category:Python

The pandas.DataFrame.fillna() function replaces the values DataFrame ​​in NaN with a certain value. pandas.DataFrame.fillna() grammar DataFrame . fillna( value = None , method = None , axis = None , inplace = False , limit = None , down

Pandas DataFrame DataFrame.dropna() function

Publish Date:2025/04/30 Views:181 Category:Python

The pandas.DataFrame.dropna() function removes null values ​​(missing values) from a DataFrame by dropping rows or columns that contain null values DataFrame . NaN ( Not a Number ) and NaT ( Not a Time ) represent null values. DataFrame

Pandas DataFrame DataFrame.assign() function

Publish Date:2025/04/30 Views:55 Category:Python

Python Pandas DataFrame.assign() function assigns new columns to DataFrame . pandas.DataFrame.assign() grammar DataFrame . assign( ** kwargs) parameter **kwargs Keyword arguments, DataFrame the column names to be assigned to are passed as k

Pandas DataFrame DataFrame.transform() function

Publish Date:2025/04/30 Views:120 Category:Python

Python Pandas DataFrame.transform() DataFrame applies a function on and transforms DataFrame . The function to be applied is passed as an argument to the function. The axis length of transform() the transformed should be the same as the ori

Scan to Read All Tech Tutorials

Social Media
  • https://www.github.com/onmpw
  • qq:1244347461

Recommended

Tags

Scan the Code
Easier Access Tutorial