Matplotlib 绘制平滑曲线
本篇文章解释了如何使用 Scipy
和 Matplotlib
包中的模块从给定坐标绘制一条平滑的曲线。
默认情况下,matplotlib.pyplot.plot()
函数是通过将数据中相邻的两个点用直线连接起来产生曲线,因此 matplotlib.pyplot.plot()
函数对于少量的数据点并不能产生平滑曲线。
为了绘制一条平滑曲线,我们首先要对曲线拟合一条曲线,并利用曲线找到 x 值对应的 y 值,并以无限小的空隙分开。最后,我们通过绘制那些间隙很小的点,得到一条平滑曲线。
使用 scipy.interpolate.make_interp_spline()
类绘制平滑曲线
import numpy as np
from scipy.interpolate import make_interp_spline
import matplotlib.pyplot as plt
x=np.array([1,2,3,4,5,6,7])
y=np.array([100,50,25,12.5,6.25,3.125,1.5625])
model=make_interp_spline(x, y)
xs=np.linspace(1,7,500)
ys=model(xs)
plt.plot(xs, ys)
plt.title("Smooth Spline Curve")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()
输出:
它通过使用 scipy.interpolate.make_interp_spline()
首先确定花键曲线的系数,绘制出一条平滑的花键曲线。我们用给定的数据来估计花样曲线的系数,然后用系数来确定间隔紧密的 x 值
的 y 值
,使曲线平滑。绘制曲线需要沿 X 轴 1 到 7 之间间隔相等的 500
。
默认情况下,花键曲线的度数是 3,我们可以设置 k
参数来改变花键曲线的度数。
如果我们使用给定的点来绘制曲线,我们得到的曲线为:
import numpy as np
import matplotlib.pyplot as plt
x=np.array([1,2,3,4,5,6,7])
y=np.array([100,50,25,12.5,6.25,3.125,1.5625])
plt.plot(x, y)
plt.title("Curve plotted using the given points")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()
输出:
使用 scipy.ndimage.gaussian_filter1d()
类绘制平滑曲线
import numpy as np
import matplotlib.pyplot as plt
from scipy.ndimage import gaussian_filter1d
x=np.array([1,2,3,4,5,6,7])
y=np.array([100,50,25,12.5,6.25,3.125,1.5625])
y_smoothed = gaussian_filter1d(y, sigma=5)
plt.plot(x, y_smoothed)
plt.title("Spline Curve Using the Gaussian Smoothing")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()
输出:
如果函数不平滑,我们可以使用 gaussian_filter1d()
来使 Y 值
平滑。scipy.ndimage.gaussian_filter1d()
类会对 Y 值
进行平滑处理,生成一条平滑的曲线,但是原来的 Y 值
可能会被改变。
sigma
参数代表高斯核的标准差,增加 sigma
的值会得到更平滑的曲线。
使用 scipy.interpolate.interp1d
类绘制平滑曲线
import numpy as np
from scipy.interpolate import interp1d
import matplotlib.pyplot as plt
x=np.array([1,2,3,4,5,6,7])
y=np.array([100,50,25,12.5,6.25,3.125,1.5625])
cubic_interploation_model=interp1d(x,y,kind="cubic")
xs=np.linspace(1,7,500)
ys=cubic_interploation_model(xs)
plt.plot(xs, ys)
plt.title("Spline Curve Using Cubic Interpolation")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()
输出:
它使用 scipy.interpolate.interp1d
类生成一条立方插值曲线,然后我们使用这条曲线来确定间距紧密的 x 值
,从而得到一条平滑的曲线。绘制曲线时,需要在 X 轴上 1 和 7 之间取间隔相等的 500 个点。
相关文章
Django 中的 Slug
发布时间:2023/05/04 浏览次数:173 分类:Python
-
本篇文章旨在定义一个 slug 以及我们如何使用 slug 字段在 Python 中使用 Django 获得独特的帖子。
在 Django 中按降序过滤查询集中的项目
发布时间:2023/05/04 浏览次数:157 分类:Python
-
在这个讲解中,学习如何借助 Django 中的 order_by() 方法按降序过滤出查询集中的项目。
Django ALLOWED_HOSTS 介绍
发布时间:2023/05/04 浏览次数:181 分类:Python
-
本文展示了如何创建您的 Django 网站,为公开发布做好准备,如何设置 ALLOWED_HOSTS 以及如何在使用 Django 进行 Web 部署期间修复预期的主要问题。
Django 中的 Select_related 方法
发布时间:2023/05/04 浏览次数:129 分类:Python
-
本文介绍了什么是查询集,如何处理这些查询以及我们如何利用 select_related() 方法来过滤 Django 中相关模型的查询。
使用 Post 请求将数据发送到 Django 服务器
发布时间:2023/05/04 浏览次数:159 分类:Python
-
在这篇关于Django的讲解中,我们简要介绍了post和get请求以及如何在Django中用post实现CSRF token。
Django 返回 JSON
发布时间:2023/05/04 浏览次数:106 分类:Python
-
在与我们的讨论中,我们简要介绍了 JSON 格式,并讨论了如何借助 Django 中的 JsonResponse 类将数据返回为 JSON 格式。
在 Django 中创建对象
发布时间:2023/05/04 浏览次数:59 分类:Python
-
本文的目的是解释什么是模型以及如何使用 create() 方法创建对象,并了解如何在 Django 中使用 save() 方法。
在 Django 中为多项选择创建字段
发布时间:2023/05/04 浏览次数:75 分类:Python
-
在本文中,我们将着眼于为多项选择创建一个字段,并向您展示如何允许用户在 Django 中进行多项选择。